Nuprl Lemma : constrained-cubical-term-eqcd

[Gamma:j⊢]. ∀[A,B:{Gamma ⊢ _}]. ∀[phi,psi:{Gamma ⊢ _:𝔽}]. ∀[t:{Gamma, phi ⊢ _:A}]. ∀[t':{Gamma, psi ⊢ _:B}].
  ({Gamma ⊢ _:A[phi |⟶ t]} {Gamma ⊢ _:B[psi |⟶ t']} ∈ 𝕌{[i j']}) supposing 
     ((t' t ∈ {Gamma, phi ⊢ _:A}) and 
     (phi psi ∈ {Gamma ⊢ _:𝔽}) and 
     (A B ∈ {Gamma ⊢ _}))


Proof




Definitions occuring in Statement :  constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} context-subset: Gamma, phi face-type: 𝔽 cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uimplies: supposing a uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T squash: T prop: true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  cubical-term_wf squash_wf true_wf equal_wf istype-universe cubical_set_wf context-subset_wf istype-cubical-term face-type_wf subtype_rel_self iff_weakening_equal subset-cubical-type context-subset-is-subset equal_functionality_wrt_subtype_rel2 cubical-type_wf cubical-type-cumulativity2 constrained-cubical-term_wf cubical_set_cumulativity-i-j thin-context-subset
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut applyEquality thin instantiate lambdaEquality_alt sqequalHypSubstitution imageElimination introduction extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeIsType because_Cache universeEquality natural_numberEquality sqequalRule imageMemberEquality baseClosed independent_isectElimination productElimination independent_functionElimination inhabitedIsType hyp_replacement equalityIstype

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A,B:\{Gamma  \mvdash{}  \_\}].  \mforall{}[phi,psi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[t:\{Gamma,  phi  \mvdash{}  \_:A\}].
\mforall{}[t':\{Gamma,  psi  \mvdash{}  \_:B\}].
    (\{Gamma  \mvdash{}  \_:A[phi  |{}\mrightarrow{}  t]\}  =  \{Gamma  \mvdash{}  \_:B[psi  |{}\mrightarrow{}  t']\})  supposing 
          ((t'  =  t)  and 
          (phi  =  psi)  and 
          (A  =  B))



Date html generated: 2020_05_20-PM-02_58_16
Last ObjectModification: 2020_04_23-PM-02_26_50

Theory : cubical!type!theory


Home Index