Nuprl Lemma : constrained-cubical-term-eqcd
∀[Gamma:j⊢]. ∀[A,B:{Gamma ⊢ _}]. ∀[phi,psi:{Gamma ⊢ _:𝔽}]. ∀[t:{Gamma, phi ⊢ _:A}]. ∀[t':{Gamma, psi ⊢ _:B}].
  ({Gamma ⊢ _:A[phi |⟶ t]} = {Gamma ⊢ _:B[psi |⟶ t']} ∈ 𝕌{[i | j']}) supposing 
     ((t' = t ∈ {Gamma, phi ⊢ _:A}) and 
     (phi = psi ∈ {Gamma ⊢ _:𝔽}) and 
     (A = B ∈ {Gamma ⊢ _}))
Proof
Definitions occuring in Statement : 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}
, 
context-subset: Gamma, phi
, 
face-type: 𝔽
, 
cubical-term: {X ⊢ _:A}
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
cubical-term_wf, 
squash_wf, 
true_wf, 
equal_wf, 
istype-universe, 
cubical_set_wf, 
context-subset_wf, 
istype-cubical-term, 
face-type_wf, 
subtype_rel_self, 
iff_weakening_equal, 
subset-cubical-type, 
context-subset-is-subset, 
equal_functionality_wrt_subtype_rel2, 
cubical-type_wf, 
cubical-type-cumulativity2, 
constrained-cubical-term_wf, 
cubical_set_cumulativity-i-j, 
thin-context-subset
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
applyEquality, 
thin, 
instantiate, 
lambdaEquality_alt, 
sqequalHypSubstitution, 
imageElimination, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
universeIsType, 
because_Cache, 
universeEquality, 
natural_numberEquality, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
inhabitedIsType, 
hyp_replacement, 
equalityIstype
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A,B:\{Gamma  \mvdash{}  \_\}].  \mforall{}[phi,psi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[t:\{Gamma,  phi  \mvdash{}  \_:A\}].
\mforall{}[t':\{Gamma,  psi  \mvdash{}  \_:B\}].
    (\{Gamma  \mvdash{}  \_:A[phi  |{}\mrightarrow{}  t]\}  =  \{Gamma  \mvdash{}  \_:B[psi  |{}\mrightarrow{}  t']\})  supposing 
          ((t'  =  t)  and 
          (phi  =  psi)  and 
          (A  =  B))
Date html generated:
2020_05_20-PM-02_58_16
Last ObjectModification:
2020_04_23-PM-02_26_50
Theory : cubical!type!theory
Home
Index