Nuprl Lemma : nh-id-left

I,J:fset(ℕ). ∀f:I ⟶ J.  (f ⋅ f ∈ I ⟶ J)


Proof




Definitions occuring in Statement :  nh-comp: g ⋅ f nh-id: 1 names-hom: I ⟶ J fset: fset(T) nat: all: x:A. B[x] equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] nh-id: 1 nh-comp: g ⋅ f names-hom: I ⟶ J dM_inc: <x> dma-lift-compose: dma-lift-compose(I;J;eqi;eqj;f;g) member: t ∈ T uall: [x:A]. B[x] compose: g squash: T prop: subtype_rel: A ⊆B DeMorgan-algebra: DeMorganAlgebra so_lambda: λ2x.t[x] and: P ∧ Q guard: {T} uimplies: supposing a so_apply: x[s] dma-hom: dma-hom(dma1;dma2) bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) dM: dM(I) true: True iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  free-dma-lift-id names_wf names-deq_wf equal_wf squash_wf true_wf lattice-point_wf dM_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf dma-hom_wf free-DeMorgan-algebra_wf iff_weakening_equal names-hom_wf fset_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalRule functionExtensionality sqequalHypSubstitution introduction extract_by_obid dependent_functionElimination thin isectElimination hypothesisEquality hypothesis applyEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry universeEquality instantiate productEquality independent_isectElimination cumulativity because_Cache setElimination rename natural_numberEquality imageMemberEquality baseClosed productElimination independent_functionElimination

Latex:
\mforall{}I,J:fset(\mBbbN{}).  \mforall{}f:I  {}\mrightarrow{}  J.    (f  \mcdot{}  1  =  f)



Date html generated: 2017_10_05-AM-01_01_45
Last ObjectModification: 2017_07_28-AM-09_25_57

Theory : cubical!type!theory


Home Index