Nuprl Lemma : free-dma-lift-id

T:Type. ∀eq:EqDecider(T).
  (free-dma-lift(T;eq;free-DeMorgan-algebra(T;eq);free-dml-deq(T;eq);λi.<i>)
  x.x)
  ∈ dma-hom(free-DeMorgan-algebra(T;eq);free-DeMorgan-algebra(T;eq)))


Proof




Definitions occuring in Statement :  free-dma-lift: free-dma-lift(T;eq;dm;eq2;f) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) dma-hom: dma-hom(dma1;dma2) dminc: <i> free-dml-deq: free-dml-deq(T;eq) deq: EqDecider(T) all: x:A. B[x] lambda: λx.A[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T deq: EqDecider(T) lattice-point: Point(l) record-select: r.x free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dist-lattice: free-dist-lattice(T; eq) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) btrue: tt bool: 𝔹 iff: ⇐⇒ Q and: P ∧ Q implies:  Q assert: b rev_implies:  Q uimplies: supposing a
Lemmas referenced :  free-dma-lift-unique free-DeMorgan-algebra_wf free-dml-deq_wf dminc_wf id-is-dma-hom deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule lambdaEquality cumulativity because_Cache independent_isectElimination universeEquality

Latex:
\mforall{}T:Type.  \mforall{}eq:EqDecider(T).
    (free-dma-lift(T;eq;free-DeMorgan-algebra(T;eq);free-dml-deq(T;eq);\mlambda{}i.<i>)  =  (\mlambda{}x.x))



Date html generated: 2018_05_22-PM-09_55_48
Last ObjectModification: 2018_05_20-PM-10_14_22

Theory : lattices


Home Index