Nuprl Lemma : id-is-dma-hom

[dma:DeMorganAlgebra]. x.x ∈ dma-hom(dma;dma))


Proof




Definitions occuring in Statement :  dma-hom: dma-hom(dma1;dma2) DeMorgan-algebra: DeMorganAlgebra uall: [x:A]. B[x] member: t ∈ T lambda: λx.A[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T dma-hom: dma-hom(dma1;dma2) DeMorgan-algebra: DeMorganAlgebra subtype_rel: A ⊆B so_lambda: λ2x.t[x] prop: and: P ∧ Q guard: {T} uimplies: supposing a so_apply: x[s] bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2)
Lemmas referenced :  dma-neg_wf lattice-point_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf DeMorgan-algebra_wf id-is-bounded-lattice-hom bdd-distributive-lattice-subtype-bdd-lattice DeMorgan-algebra-subtype bdd-distributive-lattice_wf bdd-lattice_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut dependent_set_memberEquality sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis applyEquality instantiate lambdaEquality productEquality independent_isectElimination because_Cache axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[dma:DeMorganAlgebra].  (\mlambda{}x.x  \mmember{}  dma-hom(dma;dma))



Date html generated: 2016_05_18-AM-11_48_38
Last ObjectModification: 2015_12_28-PM-01_55_41

Theory : lattices


Home Index