Nuprl Lemma : id-is-dma-hom
∀[dma:DeMorganAlgebra]. (λx.x ∈ dma-hom(dma;dma))
Proof
Definitions occuring in Statement : 
dma-hom: dma-hom(dma1;dma2)
, 
DeMorgan-algebra: DeMorganAlgebra
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
lambda: λx.A[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
dma-hom: dma-hom(dma1;dma2)
, 
DeMorgan-algebra: DeMorganAlgebra
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
guard: {T}
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
bounded-lattice-hom: Hom(l1;l2)
, 
lattice-hom: Hom(l1;l2)
Lemmas referenced : 
dma-neg_wf, 
lattice-point_wf, 
subtype_rel_set, 
DeMorgan-algebra-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
DeMorgan-algebra-structure-subtype, 
subtype_rel_transitivity, 
bounded-lattice-structure_wf, 
bounded-lattice-axioms_wf, 
uall_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
DeMorgan-algebra-axioms_wf, 
DeMorgan-algebra_wf, 
id-is-bounded-lattice-hom, 
bdd-distributive-lattice-subtype-bdd-lattice, 
DeMorgan-algebra-subtype, 
bdd-distributive-lattice_wf, 
bdd-lattice_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
dependent_set_memberEquality, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
instantiate, 
lambdaEquality, 
productEquality, 
independent_isectElimination, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[dma:DeMorganAlgebra].  (\mlambda{}x.x  \mmember{}  dma-hom(dma;dma))
Date html generated:
2016_05_18-AM-11_48_38
Last ObjectModification:
2015_12_28-PM-01_55_41
Theory : lattices
Home
Index