Nuprl Lemma : partial-term-0_wf
∀[H:j⊢]. ∀[A:{H.𝕀 ⊢ _}]. ∀[phi:{H ⊢ _:𝔽}]. ∀[u:{H.𝕀, (phi)p ⊢ _:A}].  (u[0] ∈ {H, phi ⊢ _:(A)[0(𝕀)]})
Proof
Definitions occuring in Statement : 
partial-term-0: u[0]
, 
context-subset: Gamma, phi
, 
face-type: 𝔽
, 
interval-0: 0(𝕀)
, 
interval-type: 𝕀
, 
csm-id-adjoin: [u]
, 
cc-fst: p
, 
cube-context-adjoin: X.A
, 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:A}
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
partial-term-0: u[0]
, 
squash: ↓T
, 
prop: ℙ
, 
cc-fst: p
, 
csm-ap-term: (t)s
, 
interval-0: 0(𝕀)
, 
csm-id-adjoin: [u]
, 
csm-id: 1(X)
, 
csm-adjoin: (s;u)
, 
csm-ap: (s)x
, 
pi1: fst(t)
, 
cubical-term: {X ⊢ _:A}
, 
uimplies: b supposing a
, 
true: True
, 
all: ∀x:A. B[x]
, 
cubical-term-at: u(a)
Lemmas referenced : 
cubical-term_wf, 
context-subset_wf, 
cube-context-adjoin_wf, 
interval-type_wf, 
csm-ap-term_wf, 
face-type_wf, 
csm-face-type, 
cc-fst_wf, 
thin-context-subset, 
cubical-type-cumulativity2, 
cubical_set_cumulativity-i-j, 
cubical-type_wf, 
cubical_set_wf, 
csm-ap-type_wf, 
csm-id-adjoin_wf-interval-0, 
context-subset-map, 
csm-id-adjoin_wf, 
interval-0_wf, 
squash_wf, 
true_wf, 
cubical-term-equal, 
I_cube_wf, 
fset_wf, 
nat_wf, 
cubical-term-at-morph1, 
names-hom_wf, 
istype-cubical-type-at, 
cube-set-restriction_wf, 
cubical-type-ap-morph_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
universeIsType, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
hypothesis, 
sqequalRule, 
Error :memTop, 
equalityTransitivity, 
equalitySymmetry, 
lambdaEquality_alt, 
hyp_replacement, 
imageElimination, 
setElimination, 
rename, 
independent_isectElimination, 
functionExtensionality_alt, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
dependent_set_memberEquality_alt, 
lambdaFormation_alt, 
inhabitedIsType, 
functionIsType, 
equalityIstype
Latex:
\mforall{}[H:j\mvdash{}].  \mforall{}[A:\{H.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[phi:\{H  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[u:\{H.\mBbbI{},  (phi)p  \mvdash{}  \_:A\}].
    (u[0]  \mmember{}  \{H,  phi  \mvdash{}  \_:(A)[0(\mBbbI{})]\})
Date html generated:
2020_05_20-PM-03_04_17
Last ObjectModification:
2020_04_06-PM-00_35_24
Theory : cubical!type!theory
Home
Index