Nuprl Lemma : partial-term-0_wf

[H:j⊢]. ∀[A:{H.𝕀 ⊢ _}]. ∀[phi:{H ⊢ _:𝔽}]. ∀[u:{H.𝕀(phi)p ⊢ _:A}].  (u[0] ∈ {H, phi ⊢ _:(A)[0(𝕀)]})


Proof




Definitions occuring in Statement :  partial-term-0: u[0] context-subset: Gamma, phi face-type: 𝔽 interval-0: 0(𝕀) interval-type: 𝕀 csm-id-adjoin: [u] cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B guard: {T} partial-term-0: u[0] squash: T prop: cc-fst: p csm-ap-term: (t)s interval-0: 0(𝕀) csm-id-adjoin: [u] csm-id: 1(X) csm-adjoin: (s;u) csm-ap: (s)x pi1: fst(t) cubical-term: {X ⊢ _:A} uimplies: supposing a true: True all: x:A. B[x] cubical-term-at: u(a)
Lemmas referenced :  cubical-term_wf context-subset_wf cube-context-adjoin_wf interval-type_wf csm-ap-term_wf face-type_wf csm-face-type cc-fst_wf thin-context-subset cubical-type-cumulativity2 cubical_set_cumulativity-i-j cubical-type_wf cubical_set_wf csm-ap-type_wf csm-id-adjoin_wf-interval-0 context-subset-map csm-id-adjoin_wf interval-0_wf squash_wf true_wf cubical-term-equal I_cube_wf fset_wf nat_wf cubical-term-at-morph1 names-hom_wf istype-cubical-type-at cube-set-restriction_wf cubical-type-ap-morph_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut universeIsType thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality because_Cache hypothesis sqequalRule Error :memTop,  equalityTransitivity equalitySymmetry lambdaEquality_alt hyp_replacement imageElimination setElimination rename independent_isectElimination functionExtensionality_alt natural_numberEquality imageMemberEquality baseClosed dependent_set_memberEquality_alt lambdaFormation_alt inhabitedIsType functionIsType equalityIstype

Latex:
\mforall{}[H:j\mvdash{}].  \mforall{}[A:\{H.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[phi:\{H  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[u:\{H.\mBbbI{},  (phi)p  \mvdash{}  \_:A\}].
    (u[0]  \mmember{}  \{H,  phi  \mvdash{}  \_:(A)[0(\mBbbI{})]\})



Date html generated: 2020_05_20-PM-03_04_17
Last ObjectModification: 2020_04_06-PM-00_35_24

Theory : cubical!type!theory


Home Index