Nuprl Lemma : cubical-term-at-morph1

[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[u:{X ⊢ _:A}]. ∀[I:fset(ℕ)]. ∀[a:X(I)]. ∀[J:fset(ℕ)]. ∀[f:J ⟶ I].
  ((u(a) f) u(f(a)) ∈ A(f(a)))


Proof




Definitions occuring in Statement :  cubical-term-at: u(a) cubical-term: {X ⊢ _:A} cubical-type-ap-morph: (u f) cubical-type-at: A(a) cubical-type: {X ⊢ _} cube-set-restriction: f(s) I_cube: A(I) cubical_set: CubicalSet names-hom: I ⟶ J fset: fset(T) nat: uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical-type: {X ⊢ _} cubical-term: {X ⊢ _:A} all: x:A. B[x] cubical-term-at: u(a) and: P ∧ Q subtype_rel: A ⊆B guard: {T}
Lemmas referenced :  cubical_type_at_pair_lemma cubical_type_ap_morph_pair_lemma names-hom_wf I_cube_wf fset_wf nat_wf cubical-term_wf cubical_set_cumulativity-i-j cubical-type-cumulativity-i-j cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution setElimination thin rename productElimination sqequalRule extract_by_obid dependent_functionElimination Error :memTop,  hypothesis universeIsType isectElimination hypothesisEquality isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType instantiate applyEquality

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[u:\{X  \mvdash{}  \_:A\}].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[a:X(I)].  \mforall{}[J:fset(\mBbbN{})].  \mforall{}[f:J  {}\mrightarrow{}  I].
    ((u(a)  a  f)  =  u(f(a)))



Date html generated: 2020_05_20-PM-01_52_05
Last ObjectModification: 2020_03_28-PM-00_52_56

Theory : cubical!type!theory


Home Index