Nuprl Lemma : cubical-type-cumulativity-i-j

[X:j⊢]. ({X ⊢_} ⊆cubical-type{[j i]:l}(X))


Proof




Definitions occuring in Statement :  cubical-type: {X ⊢ _} cubical_set: CubicalSet subtype_rel: A ⊆B uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] subtype_rel: A ⊆B member: t ∈ T cubical-type: {X ⊢ _} and: P ∧ Q so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a all: x:A. B[x] squash: T prop: true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  subtype_rel_dep_function I_cube_wf fset_wf nat_wf names-hom_wf cube-set-restriction_wf nh-id_wf subtype_rel-equal equal_wf squash_wf true_wf istype-universe cube-set-restriction-id subtype_rel_self iff_weakening_equal nh-comp_wf cube-set-restriction-comp cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaEquality_alt sqequalHypSubstitution setElimination thin rename cut productElimination dependent_set_memberEquality_alt dependent_pairEquality_alt functionExtensionality applyEquality hypothesisEquality hypothesis instantiate introduction extract_by_obid isectElimination cumulativity sqequalRule universeEquality universeIsType because_Cache independent_isectElimination lambdaFormation_alt functionIsType inhabitedIsType productIsType equalityIstype imageElimination equalityTransitivity equalitySymmetry natural_numberEquality imageMemberEquality baseClosed independent_functionElimination dependent_functionElimination

Latex:
\mforall{}[X:j\mvdash{}].  (\{X  \mvdash{}j  \_\}  \msubseteq{}r  cubical-type\{[j  |  i]:l\}(X))



Date html generated: 2020_05_20-PM-01_47_23
Last ObjectModification: 2020_04_03-PM-07_58_46

Theory : cubical!type!theory


Home Index