Nuprl Lemma : csm-comp-fun-to-comp-op

[Gamma,K:j⊢]. ∀[tau:K j⟶ Gamma]. ∀[A:{Gamma ⊢ _}]. ∀[cA:Gamma ⊢ Compositon(A)].
  ((cfun-to-cop(Gamma;A;cA))tau cfun-to-cop(K;(A)tau;(cA)tau) ∈ K ⊢ CompOp((A)tau))


Proof




Definitions occuring in Statement :  csm-comp-structure: (cA)tau comp-fun-to-comp-op: cfun-to-cop(Gamma;A;comp) composition-structure: Gamma ⊢ Compositon(A) csm-composition: (comp)sigma composition-op: Gamma ⊢ CompOp(A) csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B true: True squash: T prop: all: x:A. B[x] uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  comp-fun-to-comp-op-inverse composition-structure_wf cubical-type_wf cube_set_map_wf cubical_set_wf composition-op_wf csm-ap-type_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j equal_wf squash_wf true_wf istype-universe csm-composition_wf comp-fun-to-comp-op_wf csm-comp-structure_wf subtype_rel_self iff_weakening_equal csm-comp-op-to-comp-fun-sq comp-op-to-comp-fun-inverse
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality universeIsType hypothesis inhabitedIsType instantiate applyEquality because_Cache sqequalRule natural_numberEquality lambdaEquality_alt imageElimination equalityTransitivity equalitySymmetry universeEquality dependent_functionElimination imageMemberEquality baseClosed independent_isectElimination productElimination independent_functionElimination Error :memTop

Latex:
\mforall{}[Gamma,K:j\mvdash{}].  \mforall{}[tau:K  j{}\mrightarrow{}  Gamma].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[cA:Gamma  \mvdash{}  Compositon(A)].
    ((cfun-to-cop(Gamma;A;cA))tau  =  cfun-to-cop(K;(A)tau;(cA)tau))



Date html generated: 2020_05_20-PM-04_36_18
Last ObjectModification: 2020_04_17-PM-08_49_23

Theory : cubical!type!theory


Home Index