Nuprl Lemma : csm-comp-fun-to-comp-op
∀[Gamma,K:j⊢]. ∀[tau:K j⟶ Gamma]. ∀[A:{Gamma ⊢ _}]. ∀[cA:Gamma ⊢ Compositon(A)].
  ((cfun-to-cop(Gamma;A;cA))tau = cfun-to-cop(K;(A)tau;(cA)tau) ∈ K ⊢ CompOp((A)tau))
Proof
Definitions occuring in Statement : 
csm-comp-structure: (cA)tau
, 
comp-fun-to-comp-op: cfun-to-cop(Gamma;A;comp)
, 
composition-structure: Gamma ⊢ Compositon(A)
, 
csm-composition: (comp)sigma
, 
composition-op: Gamma ⊢ CompOp(A)
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cube_set_map: A ⟶ B
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
true: True
, 
squash: ↓T
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
comp-fun-to-comp-op-inverse, 
composition-structure_wf, 
cubical-type_wf, 
cube_set_map_wf, 
cubical_set_wf, 
composition-op_wf, 
csm-ap-type_wf, 
cubical-type-cumulativity2, 
cubical_set_cumulativity-i-j, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
csm-composition_wf, 
comp-fun-to-comp-op_wf, 
csm-comp-structure_wf, 
subtype_rel_self, 
iff_weakening_equal, 
csm-comp-op-to-comp-fun-sq, 
comp-op-to-comp-fun-inverse
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
universeIsType, 
hypothesis, 
inhabitedIsType, 
instantiate, 
applyEquality, 
because_Cache, 
sqequalRule, 
natural_numberEquality, 
lambdaEquality_alt, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
dependent_functionElimination, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
Error :memTop
Latex:
\mforall{}[Gamma,K:j\mvdash{}].  \mforall{}[tau:K  j{}\mrightarrow{}  Gamma].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[cA:Gamma  \mvdash{}  Compositon(A)].
    ((cfun-to-cop(Gamma;A;cA))tau  =  cfun-to-cop(K;(A)tau;(cA)tau))
Date html generated:
2020_05_20-PM-04_36_18
Last ObjectModification:
2020_04_17-PM-08_49_23
Theory : cubical!type!theory
Home
Index