Nuprl Lemma : csm-comp-structure_wf
∀[Gamma,Delta:j⊢]. ∀[tau:Delta j⟶ Gamma]. ∀[A:{Gamma ⊢ _}]. ∀[cA:Gamma ⊢ Compositon(A)].
  ((cA)tau ∈ Delta ⊢ Compositon((A)tau))
Proof
Definitions occuring in Statement : 
csm-comp-structure: (cA)tau
, 
composition-structure: Gamma ⊢ Compositon(A)
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cube_set_map: A ⟶ B
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
composition-structure: Gamma ⊢ Compositon(A)
, 
csm-comp-structure: (cA)tau
, 
composition-function: composition-function{j:l,i:l}(Gamma;A)
, 
subtype_rel: A ⊆r B
, 
csm-id-adjoin: [u]
, 
csm-id: 1(X)
, 
uimplies: b supposing a
, 
uniform-comp-function: uniform-comp-function{j:l, i:l}(Gamma; A; comp)
, 
all: ∀x:A. B[x]
, 
cube_set_map: A ⟶ B
, 
psc_map: A ⟶ B
, 
nat-trans: nat-trans(C;D;F;G)
, 
cat-ob: cat-ob(C)
, 
pi1: fst(t)
, 
op-cat: op-cat(C)
, 
spreadn: spread4, 
cube-cat: CubeCat
, 
fset: fset(T)
, 
quotient: x,y:A//B[x; y]
, 
cat-arrow: cat-arrow(C)
, 
pi2: snd(t)
, 
type-cat: TypeCat
, 
names-hom: I ⟶ J
, 
cat-comp: cat-comp(C)
, 
compose: f o g
, 
interval-type: 𝕀
, 
csm-comp: G o F
, 
csm+: tau+
, 
cc-snd: q
, 
cc-fst: p
, 
constant-cubical-type: (X)
, 
csm-ap-type: (AF)s
, 
csm-adjoin: (s;u)
, 
csm-ap: (s)x
, 
prop: ℙ
Lemmas referenced : 
composition-structure_wf, 
cubical-type_wf, 
cube_set_map_wf, 
cubical_set_wf, 
cube-context-adjoin_wf, 
interval-type_wf, 
constrained-cubical-term_wf, 
csm-ap-type_wf, 
cubical_set_cumulativity-i-j, 
csm-id-adjoin_wf-interval-0, 
cubical-type-cumulativity2, 
csm-ap-term_wf, 
context-subset_wf, 
csm-context-subset-subtype3, 
cubical-term-eqcd, 
face-type_wf, 
csm-comp-type, 
csm-id-adjoin_wf-interval-1, 
csm-comp_wf, 
subtype_rel_self, 
cubical-term_wf, 
uniform-comp-function_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
dependent_set_memberEquality_alt, 
hypothesis, 
universeIsType, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
inhabitedIsType, 
instantiate, 
functionExtensionality, 
sqequalRule, 
applyEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
lambdaEquality_alt, 
hyp_replacement, 
Error :memTop, 
cumulativity, 
lambdaFormation_alt, 
dependent_functionElimination
Latex:
\mforall{}[Gamma,Delta:j\mvdash{}].  \mforall{}[tau:Delta  j{}\mrightarrow{}  Gamma].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[cA:Gamma  \mvdash{}  Compositon(A)].
    ((cA)tau  \mmember{}  Delta  \mvdash{}  Compositon((A)tau))
Date html generated:
2020_05_20-PM-04_35_22
Last ObjectModification:
2020_04_19-PM-01_54_35
Theory : cubical!type!theory
Home
Index