Nuprl Lemma : csm-comp-structure_wf

[Gamma,Delta:j⊢]. ∀[tau:Delta j⟶ Gamma]. ∀[A:{Gamma ⊢ _}]. ∀[cA:Gamma ⊢ Compositon(A)].
  ((cA)tau ∈ Delta ⊢ Compositon((A)tau))


Proof




Definitions occuring in Statement :  csm-comp-structure: (cA)tau composition-structure: Gamma ⊢ Compositon(A) csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T composition-structure: Gamma ⊢ Compositon(A) csm-comp-structure: (cA)tau composition-function: composition-function{j:l,i:l}(Gamma;A) subtype_rel: A ⊆B csm-id-adjoin: [u] csm-id: 1(X) uimplies: supposing a uniform-comp-function: uniform-comp-function{j:l, i:l}(Gamma; A; comp) all: x:A. B[x] cube_set_map: A ⟶ B psc_map: A ⟶ B nat-trans: nat-trans(C;D;F;G) cat-ob: cat-ob(C) pi1: fst(t) op-cat: op-cat(C) spreadn: spread4 cube-cat: CubeCat fset: fset(T) quotient: x,y:A//B[x; y] cat-arrow: cat-arrow(C) pi2: snd(t) type-cat: TypeCat names-hom: I ⟶ J cat-comp: cat-comp(C) compose: g interval-type: 𝕀 csm-comp: F csm+: tau+ cc-snd: q cc-fst: p constant-cubical-type: (X) csm-ap-type: (AF)s csm-adjoin: (s;u) csm-ap: (s)x prop:
Lemmas referenced :  composition-structure_wf cubical-type_wf cube_set_map_wf cubical_set_wf cube-context-adjoin_wf interval-type_wf constrained-cubical-term_wf csm-ap-type_wf cubical_set_cumulativity-i-j csm-id-adjoin_wf-interval-0 cubical-type-cumulativity2 csm-ap-term_wf context-subset_wf csm-context-subset-subtype3 cubical-term-eqcd face-type_wf csm-comp-type csm-id-adjoin_wf-interval-1 csm-comp_wf subtype_rel_self cubical-term_wf uniform-comp-function_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut sqequalHypSubstitution setElimination thin rename dependent_set_memberEquality_alt hypothesis universeIsType introduction extract_by_obid isectElimination hypothesisEquality inhabitedIsType instantiate functionExtensionality sqequalRule applyEquality because_Cache equalityTransitivity equalitySymmetry independent_isectElimination lambdaEquality_alt hyp_replacement Error :memTop,  cumulativity lambdaFormation_alt dependent_functionElimination

Latex:
\mforall{}[Gamma,Delta:j\mvdash{}].  \mforall{}[tau:Delta  j{}\mrightarrow{}  Gamma].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[cA:Gamma  \mvdash{}  Compositon(A)].
    ((cA)tau  \mmember{}  Delta  \mvdash{}  Compositon((A)tau))



Date html generated: 2020_05_20-PM-04_35_22
Last ObjectModification: 2020_04_19-PM-01_54_35

Theory : cubical!type!theory


Home Index