Nuprl Lemma : uniform-comp-function_wf

[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[comp:composition-function{j:l,i:l}(Gamma;A)].
  (uniform-comp-function{j:l, i:l}(Gamma; A; comp) ∈ ℙ{[i' j'']})


Proof




Definitions occuring in Statement :  uniform-comp-function: uniform-comp-function{j:l, i:l}(Gamma; A; comp) composition-function: composition-function{j:l,i:l}(Gamma;A) cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uniform-comp-function: uniform-comp-function{j:l, i:l}(Gamma; A; comp) prop: all: x:A. B[x] subtype_rel: A ⊆B uimplies: supposing a csm-id-adjoin: [u] csm-id: 1(X) composition-function: composition-function{j:l,i:l}(Gamma;A) implies:  Q cube_set_map: A ⟶ B psc_map: A ⟶ B nat-trans: nat-trans(C;D;F;G) cat-ob: cat-ob(C) pi1: fst(t) op-cat: op-cat(C) spreadn: spread4 cube-cat: CubeCat fset: fset(T) quotient: x,y:A//B[x; y] cat-arrow: cat-arrow(C) pi2: snd(t) type-cat: TypeCat names-hom: I ⟶ J cat-comp: cat-comp(C) compose: g cubical-type: {X ⊢ _} csm-ap-type: (AF)s interval-1: 1(𝕀) interval-type: 𝕀 csm+: tau+ csm-comp: F csm-ap: (s)x csm-adjoin: (s;u) cc-snd: q cc-fst: p constant-cubical-type: (X) csm-ap-term: (t)s guard: {T} squash: T true: True iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q interval-0: 0(𝕀)
Lemmas referenced :  composition-function_wf cubical_set_wf cube_set_map_wf cube-context-adjoin_wf interval-type_wf face-type_wf cubical-term-eqcd thin-context-subset-adjoin csm-ap-type_wf context-subset_wf constrained-cubical-term_wf cubical_set_cumulativity-i-j csm-id-adjoin_wf-interval-0 cubical-type-cumulativity2 csm-ap-term_wf equal_wf csm-id-adjoin_wf-interval-1 csm-face-type csm-id-adjoin_wf interval-1_wf csm-context-subset-subtype2 context-subset-map cubical-type_wf csm-constrained-cubical-term subtype_rel_self csm-context-subset-subtype3 cubical-term_wf squash_wf true_wf subtype_rel_wf istype-universe subset-cubical-type context-subset-is-subset equal_functionality_wrt_subtype_rel2 iff_weakening_equal subset-cubical-term sub_cubical_set_self csm-comp_wf csm+_wf_interval csm-ap-comp-type-sq interval-0_wf sub_cubical_set_functionality csm-id-adjoin-subset
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule functionEquality cumulativity instantiate because_Cache applyEquality lambdaEquality_alt universeIsType universeEquality equalityTransitivity equalitySymmetry independent_isectElimination Error :memTop,  inhabitedIsType lambdaFormation_alt equalityIstype dependent_functionElimination independent_functionElimination setElimination rename productElimination imageElimination natural_numberEquality imageMemberEquality baseClosed hyp_replacement

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[comp:composition-function\{j:l,i:l\}(Gamma;A)].
    (uniform-comp-function\{j:l,  i:l\}(Gamma;  A;  comp)  \mmember{}  \mBbbP{}\{[i'  |  j'']\})



Date html generated: 2020_05_20-PM-04_21_37
Last ObjectModification: 2020_04_19-PM-01_54_50

Theory : cubical!type!theory


Home Index