Nuprl Lemma : csm-constrained-cubical-term

[Gamma,K:j⊢]. ∀[s:K j⟶ Gamma]. ∀[A:{Gamma ⊢ _}]. ∀[phi:{Gamma ⊢ _:𝔽}]. ∀[t:{Gamma, phi ⊢ _:A}].
[v:{Gamma ⊢ _:A[phi |⟶ t]}].
  ((v)s ∈ {K ⊢ _:(A)s[(phi)s |⟶ (t)s]})


Proof




Definitions occuring in Statement :  constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} context-subset: Gamma, phi face-type: 𝔽 csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} subtype_rel: A ⊆B guard: {T}
Lemmas referenced :  cubical-term_wf face-type_wf cubical-type_wf cube_set_map_wf cubical_set_wf thin-context-subset csm-ap-term_wf context-subset_wf csm-face-type csm-ap-type_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j csm-context-subset-subtype2 context-subset-map constrained-cubical-term_wf context-subset-term-subtype
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut universeIsType thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis inhabitedIsType dependent_set_memberEquality_alt setElimination rename equalityIstype sqequalRule Error :memTop,  equalityTransitivity equalitySymmetry applyEquality applyLambdaEquality

Latex:
\mforall{}[Gamma,K:j\mvdash{}].  \mforall{}[s:K  j{}\mrightarrow{}  Gamma].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[t:\{Gamma,  phi  \mvdash{}  \_:A\}].
\mforall{}[v:\{Gamma  \mvdash{}  \_:A[phi  |{}\mrightarrow{}  t]\}].
    ((v)s  \mmember{}  \{K  \mvdash{}  \_:(A)s[(phi)s  |{}\mrightarrow{}  (t)s]\})



Date html generated: 2020_05_20-PM-02_59_26
Last ObjectModification: 2020_04_06-AM-11_57_13

Theory : cubical!type!theory


Home Index