Nuprl Lemma : csm-comp-op-to-comp-fun-sq

[Gamma,Delta,tau,cA:Top].  ((comp-op-to-comp-fun(cA))tau comp-op-to-comp-fun(csm-composition(tau;cA)))


Proof




Definitions occuring in Statement :  csm-comp-structure: (cA)tau comp-op-to-comp-fun: comp-op-to-comp-fun(cA) csm-composition: csm-composition(sigma;comp) uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  csm-composition: csm-composition(sigma;comp) comp-op-to-comp-fun: comp-op-to-comp-fun(cA) csm-comp-structure: (cA)tau csm-ap: (s)x csm-comp: F compose: g uall: [x:A]. B[x] member: t ∈ T
Lemmas referenced :  top_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut sqequalAxiom lemma_by_obid hypothesis sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality because_Cache

Latex:
\mforall{}[Gamma,Delta,tau,cA:Top].
    ((comp-op-to-comp-fun(cA))tau  \msim{}  comp-op-to-comp-fun(csm-composition(tau;cA)))



Date html generated: 2016_05_19-AM-10_41_07
Last ObjectModification: 2016_05_01-PM-05_37_48

Theory : cubical!type!theory


Home Index