Nuprl Lemma : csm-equivU
∀[G,K:j⊢]. ∀[tau:K j⟶ G]. ∀[E:{G.𝕀 ⊢ _}]. ∀[cE:G.𝕀 ⊢ CompOp(E)].
  ((equivU(G;E;cE))tau = equivU(K;(E)tau+;(cE)tau+) ∈ {K ⊢ _:Equiv(((E)tau+)[0(𝕀)];((E)tau+)[1(𝕀)])})
Proof
Definitions occuring in Statement : 
equivU: equivU(G;E;cE)
, 
csm-composition: (comp)sigma
, 
composition-op: Gamma ⊢ CompOp(A)
, 
cubical-equiv: Equiv(T;A)
, 
interval-1: 1(𝕀)
, 
interval-0: 0(𝕀)
, 
interval-type: 𝕀
, 
csm+: tau+
, 
csm-id-adjoin: [u]
, 
cube-context-adjoin: X.A
, 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:A}
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cube_set_map: A ⟶ B
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
cubical-type: {X ⊢ _}
, 
interval-0: 0(𝕀)
, 
csm-id-adjoin: [u]
, 
csm-ap-type: (AF)s
, 
cc-fst: p
, 
interval-1: 1(𝕀)
, 
csm-id: 1(X)
, 
csm-adjoin: (s;u)
, 
csm-ap: (s)x
, 
pi1: fst(t)
, 
equivU: equivU(G;E;cE)
, 
squash: ↓T
, 
prop: ℙ
, 
csm+: tau+
, 
csm-comp: G o F
, 
all: ∀x:A. B[x]
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
interval-type: 𝕀
, 
cc-snd: q
, 
constant-cubical-type: (X)
, 
pi2: snd(t)
, 
compose: f o g
, 
csm-composition: (comp)sigma
Lemmas referenced : 
csm-ap-type_wf, 
cube-context-adjoin_wf, 
interval-type_wf, 
csm-id-adjoin_wf, 
interval-0_wf, 
cc-fst_wf_interval, 
transport_wf, 
cubical-equiv_wf, 
csm-cubical-equiv, 
subset-cubical-term2, 
sub_cubical_set_self, 
istype-cubical-term, 
composition-op_wf, 
cubical_set_cumulativity-i-j, 
cubical-type-cumulativity2, 
cubical-type_wf, 
cube_set_map_wf, 
cubical_set_wf, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
csm+_wf_interval, 
interval-1_wf, 
cubical-term-eqcd, 
csm-transport, 
equiv-comp_wf, 
csm-composition_wf, 
cubical-id-equiv_wf, 
subtype_rel_self, 
iff_weakening_equal, 
csm_id_adjoin_fst_type_lemma, 
csm-ap-id-type, 
equivU_wf, 
member_wf, 
csm-id_wf, 
csm-equiv-comp, 
csm-cubical-id-equiv
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
instantiate, 
hypothesis, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
independent_isectElimination, 
sqequalRule, 
universeIsType, 
setElimination, 
rename, 
productElimination, 
inhabitedIsType, 
lambdaEquality_alt, 
imageElimination, 
universeEquality, 
dependent_functionElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination, 
Error :memTop, 
hyp_replacement, 
cumulativity, 
functionExtensionality, 
lambdaFormation_alt, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
productIsType, 
equalityIstype, 
applyLambdaEquality, 
functionIsType
Latex:
\mforall{}[G,K:j\mvdash{}].  \mforall{}[tau:K  j{}\mrightarrow{}  G].  \mforall{}[E:\{G.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[cE:G.\mBbbI{}  \mvdash{}  CompOp(E)].
    ((equivU(G;E;cE))tau  =  equivU(K;(E)tau+;(cE)tau+))
Date html generated:
2020_05_20-PM-07_21_47
Last ObjectModification:
2020_04_28-PM-00_51_34
Theory : cubical!type!theory
Home
Index