Nuprl Lemma : csm-equivU

[G,K:j⊢]. ∀[tau:K j⟶ G]. ∀[E:{G.𝕀 ⊢ _}]. ∀[cE:G.𝕀 ⊢ CompOp(E)].
  ((equivU(G;E;cE))tau equivU(K;(E)tau+;(cE)tau+) ∈ {K ⊢ _:Equiv(((E)tau+)[0(𝕀)];((E)tau+)[1(𝕀)])})


Proof




Definitions occuring in Statement :  equivU: equivU(G;E;cE) csm-composition: (comp)sigma composition-op: Gamma ⊢ CompOp(A) cubical-equiv: Equiv(T;A) interval-1: 1(𝕀) interval-0: 0(𝕀) interval-type: 𝕀 csm+: tau+ csm-id-adjoin: [u] cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B uimplies: supposing a cubical-type: {X ⊢ _} interval-0: 0(𝕀) csm-id-adjoin: [u] csm-ap-type: (AF)s cc-fst: p interval-1: 1(𝕀) csm-id: 1(X) csm-adjoin: (s;u) csm-ap: (s)x pi1: fst(t) equivU: equivU(G;E;cE) squash: T prop: csm+: tau+ csm-comp: F all: x:A. B[x] true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q interval-type: 𝕀 cc-snd: q constant-cubical-type: (X) pi2: snd(t) compose: g csm-composition: (comp)sigma
Lemmas referenced :  csm-ap-type_wf cube-context-adjoin_wf interval-type_wf csm-id-adjoin_wf interval-0_wf cc-fst_wf_interval transport_wf cubical-equiv_wf csm-cubical-equiv subset-cubical-term2 sub_cubical_set_self istype-cubical-term composition-op_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 cubical-type_wf cube_set_map_wf cubical_set_wf equal_wf squash_wf true_wf istype-universe csm+_wf_interval interval-1_wf cubical-term-eqcd csm-transport equiv-comp_wf csm-composition_wf cubical-id-equiv_wf subtype_rel_self iff_weakening_equal csm_id_adjoin_fst_type_lemma csm-ap-id-type equivU_wf member_wf csm-id_wf csm-equiv-comp csm-cubical-id-equiv
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality instantiate hypothesis because_Cache equalityTransitivity equalitySymmetry applyEquality independent_isectElimination sqequalRule universeIsType setElimination rename productElimination inhabitedIsType lambdaEquality_alt imageElimination universeEquality dependent_functionElimination natural_numberEquality imageMemberEquality baseClosed independent_functionElimination Error :memTop,  hyp_replacement cumulativity functionExtensionality lambdaFormation_alt dependent_set_memberEquality_alt independent_pairFormation productIsType equalityIstype applyLambdaEquality functionIsType

Latex:
\mforall{}[G,K:j\mvdash{}].  \mforall{}[tau:K  j{}\mrightarrow{}  G].  \mforall{}[E:\{G.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[cE:G.\mBbbI{}  \mvdash{}  CompOp(E)].
    ((equivU(G;E;cE))tau  =  equivU(K;(E)tau+;(cE)tau+))



Date html generated: 2020_05_20-PM-07_21_47
Last ObjectModification: 2020_04_28-PM-00_51_34

Theory : cubical!type!theory


Home Index