Nuprl Lemma : csm-transport

[Gamma:j⊢]. ∀[A:{Gamma.𝕀 ⊢ _}]. ∀[cA:Gamma.𝕀 ⊢ CompOp(A)]. ∀[a:{Gamma ⊢ _:(A)[0(𝕀)]}]. ∀[H:j⊢]. ∀[s:H j⟶ Gamma].
  ((transport(Gamma;a))s transport(H;(a)s) ∈ {H ⊢ _:((A)[1(𝕀)])s})


Proof




Definitions occuring in Statement :  transport: transport(Gamma;a) csm-composition: (comp)sigma composition-op: Gamma ⊢ CompOp(A) interval-1: 1(𝕀) interval-0: 0(𝕀) interval-type: 𝕀 csm+: tau+ csm-id-adjoin: [u] cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T transport: transport(Gamma;a) constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} subtype_rel: A ⊆B uimplies: supposing a prop: squash: T true: True cubical-type: {X ⊢ _} interval-0: 0(𝕀) csm-id-adjoin: [u] csm-ap-type: (AF)s interval-type: 𝕀 csm+: tau+ csm-ap: (s)x csm-id: 1(X) csm-adjoin: (s;u) cc-snd: q cc-fst: p constant-cubical-type: (X) csm-comp: F pi2: snd(t) compose: g pi1: fst(t) cube_set_map: A ⟶ B psc_map: A ⟶ B nat-trans: nat-trans(C;D;F;G) cat-ob: cat-ob(C) op-cat: op-cat(C) spreadn: spread4 cube-cat: CubeCat fset: fset(T) quotient: x,y:A//B[x; y] cat-arrow: cat-arrow(C) type-cat: TypeCat all: x:A. B[x] names-hom: I ⟶ J cat-comp: cat-comp(C) interval-1: 1(𝕀)
Lemmas referenced :  composition-term-uniformity face-0_wf empty-context-subset-lemma4 interval-type_wf empty-context-subset-lemma3 subset-cubical-term context-subset_wf context-subset-is-subset csm-ap-type_wf cube-context-adjoin_wf csm-id-adjoin_wf-interval-0 equal_wf squash_wf true_wf istype-universe cubical-term_wf cubical-type-cumulativity2 csm-id-adjoin_wf-interval-1 cube_set_map_wf cubical_set_cumulativity-i-j composition-op_wf cubical-type_wf cubical_set_wf csm-face-0 csm-ap-term_wf csm-context-subset-subtype2 csm-discrete-cubical-term transport_wf csm+_wf_interval subtype_rel_self csm-composition_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis Error :memTop,  equalityTransitivity equalitySymmetry dependent_set_memberEquality_alt equalityIstype inhabitedIsType applyEquality because_Cache independent_isectElimination instantiate sqequalRule hyp_replacement lambdaEquality_alt imageElimination universeIsType universeEquality natural_numberEquality imageMemberEquality baseClosed isect_memberEquality_alt axiomEquality isectIsTypeImplies setElimination rename productElimination

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[cA:Gamma.\mBbbI{}  \mvdash{}  CompOp(A)].  \mforall{}[a:\{Gamma  \mvdash{}  \_:(A)[0(\mBbbI{})]\}].  \mforall{}[H:j\mvdash{}].
\mforall{}[s:H  j{}\mrightarrow{}  Gamma].
    ((transport(Gamma;a))s  =  transport(H;(a)s))



Date html generated: 2020_05_20-PM-04_25_56
Last ObjectModification: 2020_04_10-PM-11_08_51

Theory : cubical!type!theory


Home Index