Nuprl Lemma : composition-term-uniformity

[H,K:j⊢]. ∀[tau:K j⟶ H]. ∀[phi:{H ⊢ _:𝔽}]. ∀[A:{H.𝕀 ⊢ _}]. ∀[u:{H, phi.𝕀 ⊢ _:A}].
[a0:{H ⊢ _:(A)[0(𝕀)][phi |⟶ (u)[0(𝕀)]]}]. ∀[cA:H.𝕀 ⊢ CompOp(A)].
  ((comp cA [phi ⊢→ u] a0)tau comp (cA)tau+ [(phi)tau ⊢→ (u)tau+] (a0)tau ∈ {K ⊢ _:((A)[1(𝕀)])tau})


Proof




Definitions occuring in Statement :  composition-term: comp cA [phi ⊢→ u] a0 csm-composition: (comp)sigma composition-op: Gamma ⊢ CompOp(A) constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} context-subset: Gamma, phi face-type: 𝔽 interval-1: 1(𝕀) interval-0: 0(𝕀) interval-type: 𝕀 csm+: tau+ csm-id-adjoin: [u] cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q csm+: tau+ csm-comp: F subtype_rel: A ⊆B csm-id-adjoin: [u] csm-id: 1(X) uimplies: supposing a cubical-type: {X ⊢ _} interval-0: 0(𝕀) csm-ap-term: (t)s csm-ap-type: (AF)s csm-adjoin: (s;u) csm-ap: (s)x constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} guard: {T} interval-type: 𝕀 cc-snd: q cc-fst: p constant-cubical-type: (X) pi2: snd(t) compose: g pi1: fst(t) same-cubical-type: Gamma ⊢ B dM0: 0 lattice-0: 0 record-select: r.x dM: dM(I) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dist-lattice: free-dist-lattice(T; eq) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) btrue: tt empty-fset: {} nil: [] it: interval-1: 1(𝕀) cubical-term-at: u(a) composition-term: comp cA [phi ⊢→ u] a0 csm-composition: (comp)sigma composition-op: Gamma ⊢ CompOp(A) cc-adjoin-cube: (v;u) squash: T prop: true: True interval-presheaf: 𝕀 names: names(I) nat: so_lambda: λ2x.t[x] so_apply: x[s] cubical-type-at: A(a) face-type: 𝔽 I_cube: A(I) functor-ob: ob(F) face-presheaf: 𝔽 lattice-point: Point(l) face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) subset-iota: iota formal-cube: formal-cube(I) bdd-distributive-lattice: BoundedDistributiveLattice and: P ∧ Q cube-context-adjoin: X.A context-map: <rho> names-hom: I ⟶ J iff: ⇐⇒ Q rev_implies:  Q cubical-path-0: cubical-path-0(Gamma;A;I;i;rho;phi;u) cubical-path-condition: cubical-path-condition(Gamma;A;I;i;rho;phi;u;a0) DeMorgan-algebra: DeMorganAlgebra nc-0: (i0) bool: 𝔹 unit: Unit uiff: uiff(P;Q) bnot: ¬bb not: ¬A false: False exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) assert: b nequal: a ≠ b ∈  satisfiable_int_formula: satisfiable_int_formula(fmla) cubical-type-ap-morph: (u f) cube-set-restriction: f(s) dM-lift: dM-lift(I;J;f) free-dma-lift: free-dma-lift(T;eq;dm;eq2;f) free-DeMorgan-algebra-property free-dist-lattice-property lattice-extend: lattice-extend(L;eq;eqL;f;ac) lattice-fset-join: \/(s) reduce: reduce(f;k;as) list_ind: list_ind fset-image: f"(s) f-union: f-union(domeq;rngeq;s;x.g[x]) list_accum: list_accum context-subset: Gamma, phi name-morph-satisfies: (psi f) 1 bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) sub_cubical_set: Y ⊆ X functor-arrow: arrow(F) cubical-path-1: cubical-path-1(Gamma;A;I;i;rho;phi;u)
Lemmas referenced :  csm-ap-term_wf cube-context-adjoin_wf interval-type_wf face-type_wf csm-face-type cc-fst_wf_interval csm+_wf_interval composition-op_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 csm-ap-type_wf csm-id-adjoin_wf interval-0_wf context-subset_wf thin-context-subset-adjoin csm-id-adjoin_wf-interval-0 constrained-cubical-term-eqcd istype-cubical-term cubical-type_wf cube_set_map_wf cubical_set_wf cubical-term-equal2 interval-1_wf composition-term_wf csm-composition_wf context-subset-map csm-constrained-cubical-term subset-cubical-term2 sub_cubical_set_self thin-context-subset subset-cubical-type context-subset-is-subset equal_functionality_wrt_subtype_rel2 csm-ap-term-wf-subset face-term-implies-same cubical-term-eqcd csm-ap-term-at I_cube_wf fset_wf nat_wf new-name_wf cc-adjoin-cube_wf squash_wf true_wf istype-cubical-type-at add-name_wf csm-ap-restriction nc-s_wf f-subset-add-name interval-type-at I_cube_pair_redex_lemma dM_inc_wf trivial-member-add-name1 fset-member_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf istype-int strong-subtype-self cubical-term-at_wf subtype_rel_self face-presheaf_wf2 csm-comp_wf formal-cube_wf1 context-map_wf cube-set-restriction_wf cubical-term_wf cubical-subset-is-context-subset csm-ap_wf cubical-term-equal face-type-at lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf equal_wf lattice-meet_wf lattice-join_wf arrow_pair_lemma cubical_type_ap_morph_pair_lemma cubical-type-at_wf_face-type names-hom_wf istype-universe subtype_rel-equal iff_weakening_equal face-type-comp-at-lemma csm-comp-context-map context-subset-subtype-simple context-subset-map-equal cubical-type-at_wf composition-type-lemma1 interval-type-at-is-point csm-ap-type-at cubical-subset_wf cc-adjoin-cube-restriction cube-set-restriction-comp nc-0_wf cubical-subset-I_cube-member nh-comp_wf s-comp-if-lemma1 nh-comp-assoc s-comp-nc-0-new nh-id-right cubical-subset-I_cube dM_wf DeMorgan-algebra-structure_wf DeMorgan-algebra-structure-subtype subtype_rel_transitivity DeMorgan-algebra-axioms_wf dM-lift_wf2 interval-type-ap-morph dM-lift-inc dM-lift-0 dM0-sq-empty eq_int_wf eqtt_to_assert assert_of_eq_int eqff_to_assert assert_elim bnot_wf bool_wf eq_int_eq_true bfalse_wf btrue_neq_bfalse bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int btrue_wf not_assert_elim full-omega-unsat intformnot_wf intformeq_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_wf dM0_wf cubical-type-ap-morph_wf cube-set-restriction-when-id cubical-term-at-morph csm-cubical-type-ap-morph lattice-1_wf fl-morph_wf face-type-ap-morph subset-I_cube nh-comp-sq context-adjoin-subset1 cube_set_restriction_pair_lemma fl-morph-comp2 cubical-path-condition_wf csm-ap-interval-1-adjoin-lemma free-DeMorgan-algebra-property free-dist-lattice-property
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin instantiate hypothesis hypothesisEquality sqequalRule Error :memTop,  inhabitedIsType lambdaFormation_alt equalityTransitivity equalitySymmetry equalityIstype dependent_functionElimination independent_functionElimination universeIsType applyEquality because_Cache independent_isectElimination lambdaEquality_alt hyp_replacement setElimination rename productElimination imageElimination natural_numberEquality imageMemberEquality baseClosed dependent_set_memberEquality_alt intEquality functionExtensionality productEquality cumulativity isectEquality universeEquality dependent_pairEquality_alt unionElimination equalityElimination independent_pairFormation productIsType applyLambdaEquality voidElimination dependent_pairFormation_alt promote_hyp approximateComputation int_eqEquality

Latex:
\mforall{}[H,K:j\mvdash{}].  \mforall{}[tau:K  j{}\mrightarrow{}  H].  \mforall{}[phi:\{H  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A:\{H.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[u:\{H,  phi.\mBbbI{}  \mvdash{}  \_:A\}].
\mforall{}[a0:\{H  \mvdash{}  \_:(A)[0(\mBbbI{})][phi  |{}\mrightarrow{}  (u)[0(\mBbbI{})]]\}].  \mforall{}[cA:H.\mBbbI{}  \mvdash{}  CompOp(A)].
    ((comp  cA  [phi  \mvdash{}\mrightarrow{}  u]  a0)tau  =  comp  (cA)tau+  [(phi)tau  \mvdash{}\mrightarrow{}  (u)tau+]  (a0)tau)



Date html generated: 2020_05_20-PM-04_25_42
Last ObjectModification: 2020_05_02-AM-10_10_30

Theory : cubical!type!theory


Home Index