Nuprl Lemma : composition-term_wf

[Gamma:j⊢]. ∀[phi:{Gamma ⊢ _:𝔽}]. ∀[A:{Gamma.𝕀 ⊢ _}]. ∀[cA:Gamma.𝕀 ⊢ CompOp(A)]. ∀[u:{Gamma, phi.𝕀 ⊢ _:A}].
[a0:{Gamma ⊢ _:(A)[0(𝕀)][phi |⟶ (u)[0(𝕀)]]}].
  (comp cA [phi ⊢→ u] a0 ∈ {Gamma ⊢ _:(A)[1(𝕀)][phi |⟶ (u)[1(𝕀)]]})


Proof




Definitions occuring in Statement :  composition-term: comp cA [phi ⊢→ u] a0 composition-op: Gamma ⊢ CompOp(A) constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} context-subset: Gamma, phi face-type: 𝔽 interval-1: 1(𝕀) interval-0: 0(𝕀) interval-type: 𝕀 csm-id-adjoin: [u] cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B all: x:A. B[x] csm-id-adjoin: [u] csm-id: 1(X) guard: {T} composition-term: comp cA [phi ⊢→ u] a0 uimplies: supposing a interval-presheaf: 𝕀 names: names(I) nat: so_lambda: λ2x.t[x] so_apply: x[s] prop: cubical-type-at: A(a) pi1: fst(t) face-type: 𝔽 constant-cubical-type: (X) I_cube: A(I) functor-ob: ob(F) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt context-map: <rho> subset-iota: iota csm-comp: F compose: g cubical-path-0: cubical-path-0(Gamma;A;I;i;rho;phi;u) constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} squash: T true: True iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q interval-0: 0(𝕀) dM: dM(I) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dist-lattice: free-dist-lattice(T; eq) interval-type: 𝕀 nc-0: (i0) bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) empty-fset: {} nil: [] dM0: 0 lattice-0: 0 exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b false: False not: ¬A nequal: a ≠ b ∈  satisfiable_int_formula: satisfiable_int_formula(fmla) cubical-path-condition: cubical-path-condition(Gamma;A;I;i;rho;phi;u;a0) DeMorgan-algebra: DeMorganAlgebra cubical-type-ap-morph: (u f) pi2: snd(t) cube-set-restriction: f(s) dM-lift: dM-lift(I;J;f) free-dma-lift: free-dma-lift(T;eq;dm;eq2;f) free-DeMorgan-algebra-property free-dist-lattice-property lattice-extend: lattice-extend(L;eq;eqL;f;ac) lattice-fset-join: \/(s) reduce: reduce(f;k;as) list_ind: list_ind fset-image: f"(s) f-union: f-union(domeq;rngeq;s;x.g[x]) list_accum: list_accum cc-adjoin-cube: (v;u) csm-ap: (s)x csm-adjoin: (s;u) context-subset: Gamma, phi bdd-distributive-lattice: BoundedDistributiveLattice name-morph-satisfies: (psi f) 1 bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) cube-context-adjoin: X.A composition-op: Gamma ⊢ CompOp(A) cubical-term: {X ⊢ _:A} cubical-path-1: cubical-path-1(Gamma;A;I;i;rho;phi;u) composition-uniformity: composition-uniformity(Gamma;A;comp) nc-1: (i1) interval-1: 1(𝕀) nc-e': g,i=j ge: i ≥  decidable: Dec(P) dma-hom: dma-hom(dma1;dma2) names-hom: I ⟶ J partial-term-1: u[1] cubical-term-at: u(a) cubical-path-condition': cubical-path-condition'(Gamma;A;I;i;rho;phi;u;a1) csm-ap-term: (t)s cubical-type: {X ⊢ _} csm-ap-type: (AF)s
Lemmas referenced :  composition-op_wf cube-context-adjoin_wf cubical_set_cumulativity-i-j interval-type_wf cubical-type-cumulativity2 cubical-type_wf istype-cubical-term face-type_wf cubical_set_wf context-subset-adjoin-subtype composition-type-lemma5 constrained-cubical-term_wf csm-ap-type_wf csm-id-adjoin_wf-interval-0 csm-ap-term_wf context-subset_wf thin-context-subset-adjoin cc-adjoin-cube_wf add-name_wf new-name_wf cube-set-restriction_wf nc-s_wf f-subset-add-name interval-type-at I_cube_pair_redex_lemma dM_inc_wf trivial-member-add-name1 fset-member_wf nat_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf istype-int strong-subtype-self I_cube_wf fset_wf cubical-subset_wf face-presheaf_wf2 cubical-term-at_wf subtype_rel_self context-map-lemma2 csm-ap-type-at cubical-type-at_wf equal_wf squash_wf true_wf istype-universe cube-set-restriction-comp nc-0_wf iff_weakening_equal cube-set-restriction-when-id nh-comp_wf s-comp-nc-0-new csm-id-adjoin-ap cc-adjoin-cube-restriction trivial-equal dM0_wf interval-type-ap-inc interval-type-at-is-point eq_int_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int eq_int_eq_true btrue_wf not_assert_elim btrue_neq_bfalse full-omega-unsat intformnot_wf intformeq_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_wf istype-cubical-type-at cubical-subset-I_cube names-hom_wf cube-set-restriction-id s-comp-nc-0 lattice-point_wf dM_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf dM-lift_wf2 dM0-sq-empty dM-lift-0 assert_elim bnot_wf bfalse_wf interval-type-ap-morph dM-lift-inc cubical-subset-I_cube-member cubical-type-ap-morph_wf subtype_rel-equal cubical-term-at-morph csm-cubical-type-ap-morph face_lattice_wf lattice-1_wf fl-morph_wf face-type-ap-morph thin-context-subset subset-I_cube context-subset-is-subset csm-ap-term-at arrow_pair_lemma s-comp-if-lemma1 nh-comp-assoc nh-id-right nh-comp-sq cubical-path-condition_wf csm-id-adjoin_wf-interval-1 composition-type-lemma2 nc-1_wf nh-id_wf nh-id-left s-comp-nc-1 dM1-sq-singleton-empty dM-lift-1 s-comp-nc-1-new dM1_wf csm-ap_wf csm-ap-restriction nc-e'_wf nc-e'-lemma3 face-term-at-restriction composition-type-lemma3 cubical-path-0-ap-morph interval-presheaf_wf small_cubical_set_subtype nat_properties decidable__le intformand_wf intformle_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma istype-le dM-lift_wf eq_int_eq_true_intro names_wf composition-type-lemma4 cubical-term-equal partial-term-1_wf subset-cubical-term csm-face-type cc-fst_wf_interval sub_cubical_set_transitivity sub_cubical_set_self context-adjoin-subset1 name-morph-satisfies_wf name-morph-1-satisfies cubical-type-ap-morph-id csm-id-adjoin_wf interval-1_wf context-subset-term-subtype free-DeMorgan-algebra-property free-dist-lattice-property
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt universeIsType cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality hypothesis sqequalRule because_Cache lambdaFormation_alt cumulativity equalityTransitivity equalitySymmetry axiomEquality isect_memberEquality_alt isectIsTypeImplies inhabitedIsType dependent_functionElimination independent_isectElimination Error :memTop,  dependent_set_memberEquality_alt lambdaEquality_alt setElimination rename intEquality natural_numberEquality imageElimination imageMemberEquality baseClosed hyp_replacement universeEquality productElimination independent_functionElimination unionElimination equalityElimination dependent_pairFormation_alt equalityIstype promote_hyp voidElimination approximateComputation int_eqEquality productEquality isectEquality independent_pairFormation productIsType applyLambdaEquality dependent_pairEquality_alt functionExtensionality functionEquality functionIsType

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A:\{Gamma.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[cA:Gamma.\mBbbI{}  \mvdash{}  CompOp(A)].
\mforall{}[u:\{Gamma,  phi.\mBbbI{}  \mvdash{}  \_:A\}].  \mforall{}[a0:\{Gamma  \mvdash{}  \_:(A)[0(\mBbbI{})][phi  |{}\mrightarrow{}  (u)[0(\mBbbI{})]]\}].
    (comp  cA  [phi  \mvdash{}\mrightarrow{}  u]  a0  \mmember{}  \{Gamma  \mvdash{}  \_:(A)[1(\mBbbI{})][phi  |{}\mrightarrow{}  (u)[1(\mBbbI{})]]\})



Date html generated: 2020_05_20-PM-04_11_53
Last ObjectModification: 2020_04_21-AM-00_49_38

Theory : cubical!type!theory


Home Index