Nuprl Lemma : context-subset-adjoin-subtype

[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[phi:{Gamma ⊢ _:𝔽}].  ({Gamma.A ⊢ _} ⊆{Gamma, phi.A ⊢ _})


Proof




Definitions occuring in Statement :  context-subset: Gamma, phi face-type: 𝔽 cube-context-adjoin: X.A cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet subtype_rel: A ⊆B uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B cubical-type: {X ⊢ _} all: x:A. B[x] cube-context-adjoin: X.A context-subset: Gamma, phi and: P ∧ Q bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: so_apply: x[s] uimplies: supposing a cubical-type-at: A(a) pi1: fst(t) face-type: 𝔽 constant-cubical-type: (X) I_cube: A(I) functor-ob: ob(F) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt guard: {T} cube-set-restriction: f(s) pi2: snd(t) squash: T true: True iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  cubical-type_wf cube-context-adjoin_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 cubical-term_wf face-type_wf cubical_set_wf context-subset-subtype-simple fset_wf nat_wf I_cube_pair_redex_lemma subtype_rel_product I_cube_wf equal_wf lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf lattice-meet_wf lattice-join_wf cubical-term-at_wf subtype_rel_self lattice-1_wf cubical-type-at_wf istype-cubical-type-at subtype_rel_dep_function context-subset_wf thin-context-subset subtype_rel_transitivity istype-universe names-hom_wf cube_set_restriction_pair_lemma cube-set-restriction_wf nh-id_wf subtype_rel-equal squash_wf true_wf cube-set-restriction-id iff_weakening_equal nh-comp_wf cube-set-restriction-comp
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaEquality_alt sqequalHypSubstitution setElimination thin rename productElimination hypothesis universeIsType instantiate extract_by_obid isectElimination hypothesisEquality applyEquality sqequalRule axiomEquality isect_memberEquality_alt isectIsTypeImplies inhabitedIsType lambdaFormation_alt dependent_functionElimination Error :memTop,  setEquality cumulativity productEquality isectEquality because_Cache independent_isectElimination equalityTransitivity equalitySymmetry setIsType equalityIstype dependent_set_memberEquality_alt dependent_pairEquality_alt functionExtensionality universeEquality hyp_replacement functionIsType independent_pairFormation promote_hyp productIsType imageElimination natural_numberEquality imageMemberEquality baseClosed independent_functionElimination

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].    (\{Gamma.A  \mvdash{}  \_\}  \msubseteq{}r  \{Gamma,  phi.A  \mvdash{}  \_\})



Date html generated: 2020_05_20-PM-03_02_32
Last ObjectModification: 2020_04_06-PM-00_09_07

Theory : cubical!type!theory


Home Index