Nuprl Lemma : context-subset-adjoin-subtype
∀[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[phi:{Gamma ⊢ _:𝔽}]. ({Gamma.A ⊢ _} ⊆r {Gamma, phi.A ⊢ _})
Proof
Definitions occuring in Statement :
context-subset: Gamma, phi
,
face-type: 𝔽
,
cube-context-adjoin: X.A
,
cubical-term: {X ⊢ _:A}
,
cubical-type: {X ⊢ _}
,
cubical_set: CubicalSet
,
subtype_rel: A ⊆r B
,
uall: ∀[x:A]. B[x]
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
subtype_rel: A ⊆r B
,
cubical-type: {X ⊢ _}
,
all: ∀x:A. B[x]
,
cube-context-adjoin: X.A
,
context-subset: Gamma, phi
,
and: P ∧ Q
,
bdd-distributive-lattice: BoundedDistributiveLattice
,
so_lambda: λ2x.t[x]
,
prop: ℙ
,
so_apply: x[s]
,
uimplies: b supposing a
,
cubical-type-at: A(a)
,
pi1: fst(t)
,
face-type: 𝔽
,
constant-cubical-type: (X)
,
I_cube: A(I)
,
functor-ob: ob(F)
,
face-presheaf: 𝔽
,
lattice-point: Point(l)
,
record-select: r.x
,
face_lattice: face_lattice(I)
,
face-lattice: face-lattice(T;eq)
,
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x])
,
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P)
,
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice,
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
,
record-update: r[x := v]
,
ifthenelse: if b then t else f fi
,
eq_atom: x =a y
,
bfalse: ff
,
btrue: tt
,
guard: {T}
,
cube-set-restriction: f(s)
,
pi2: snd(t)
,
squash: ↓T
,
true: True
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
implies: P
⇒ Q
Lemmas referenced :
cubical-type_wf,
cube-context-adjoin_wf,
cubical_set_cumulativity-i-j,
cubical-type-cumulativity2,
cubical-term_wf,
face-type_wf,
cubical_set_wf,
context-subset-subtype-simple,
fset_wf,
nat_wf,
I_cube_pair_redex_lemma,
subtype_rel_product,
I_cube_wf,
equal_wf,
lattice-point_wf,
face_lattice_wf,
subtype_rel_set,
bounded-lattice-structure_wf,
lattice-structure_wf,
lattice-axioms_wf,
bounded-lattice-structure-subtype,
bounded-lattice-axioms_wf,
lattice-meet_wf,
lattice-join_wf,
cubical-term-at_wf,
subtype_rel_self,
lattice-1_wf,
cubical-type-at_wf,
istype-cubical-type-at,
subtype_rel_dep_function,
context-subset_wf,
thin-context-subset,
subtype_rel_transitivity,
istype-universe,
names-hom_wf,
cube_set_restriction_pair_lemma,
cube-set-restriction_wf,
nh-id_wf,
subtype_rel-equal,
squash_wf,
true_wf,
cube-set-restriction-id,
iff_weakening_equal,
nh-comp_wf,
cube-set-restriction-comp
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation_alt,
introduction,
cut,
lambdaEquality_alt,
sqequalHypSubstitution,
setElimination,
thin,
rename,
productElimination,
hypothesis,
universeIsType,
instantiate,
extract_by_obid,
isectElimination,
hypothesisEquality,
applyEquality,
sqequalRule,
axiomEquality,
isect_memberEquality_alt,
isectIsTypeImplies,
inhabitedIsType,
lambdaFormation_alt,
dependent_functionElimination,
Error :memTop,
setEquality,
cumulativity,
productEquality,
isectEquality,
because_Cache,
independent_isectElimination,
equalityTransitivity,
equalitySymmetry,
setIsType,
equalityIstype,
dependent_set_memberEquality_alt,
dependent_pairEquality_alt,
functionExtensionality,
universeEquality,
hyp_replacement,
functionIsType,
independent_pairFormation,
promote_hyp,
productIsType,
imageElimination,
natural_numberEquality,
imageMemberEquality,
baseClosed,
independent_functionElimination
Latex:
\mforall{}[Gamma:j\mvdash{}]. \mforall{}[A:\{Gamma \mvdash{} \_\}]. \mforall{}[phi:\{Gamma \mvdash{} \_:\mBbbF{}\}]. (\{Gamma.A \mvdash{} \_\} \msubseteq{}r \{Gamma, phi.A \mvdash{} \_\})
Date html generated:
2020_05_20-PM-03_02_32
Last ObjectModification:
2020_04_06-PM-00_09_07
Theory : cubical!type!theory
Home
Index