Nuprl Lemma : context-adjoin-subset1
∀[H:j⊢]. ∀[phi:{H ⊢ _:𝔽}].  sub_cubical_set{j:l}(H.𝕀, (phi)p; H, phi.𝕀)
Proof
Definitions occuring in Statement : 
context-subset: Gamma, phi
, 
face-type: 𝔽
, 
interval-type: 𝕀
, 
cc-fst: p
, 
cube-context-adjoin: X.A
, 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:A}
, 
sub_cubical_set: Y ⊆ X
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
sub_cubical_set: Y ⊆ X
Lemmas referenced : 
context-adjoin-subset0, 
interval-type_wf, 
cubical-term_wf, 
face-type_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
dependent_functionElimination, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType
Latex:
\mforall{}[H:j\mvdash{}].  \mforall{}[phi:\{H  \mvdash{}  \_:\mBbbF{}\}].    sub\_cubical\_set\{j:l\}(H.\mBbbI{},  (phi)p;  H,  phi.\mBbbI{})
Date html generated:
2020_05_20-PM-03_05_19
Last ObjectModification:
2020_04_13-PM-05_50_30
Theory : cubical!type!theory
Home
Index