Nuprl Lemma : context-adjoin-subset1

[H:j⊢]. ∀[phi:{H ⊢ _:𝔽}].  sub_cubical_set{j:l}(H.𝕀(phi)p; H, phi.𝕀)


Proof




Definitions occuring in Statement :  context-subset: Gamma, phi face-type: 𝔽 interval-type: 𝕀 cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} sub_cubical_set: Y ⊆ X cubical_set: CubicalSet uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] sub_cubical_set: Y ⊆ X
Lemmas referenced :  context-adjoin-subset0 interval-type_wf cubical-term_wf face-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality dependent_functionElimination hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry universeIsType isect_memberEquality_alt isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[H:j\mvdash{}].  \mforall{}[phi:\{H  \mvdash{}  \_:\mBbbF{}\}].    sub\_cubical\_set\{j:l\}(H.\mBbbI{},  (phi)p;  H,  phi.\mBbbI{})



Date html generated: 2020_05_20-PM-03_05_19
Last ObjectModification: 2020_04_13-PM-05_50_30

Theory : cubical!type!theory


Home Index