Nuprl Lemma : interval-type-at-is-point

[J,rho:Top].  (𝕀(rho) Point(dM(J)))


Proof




Definitions occuring in Statement :  interval-type: 𝕀 cubical-type-at: A(a) dM: dM(I) lattice-point: Point(l) uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T interval-presheaf: 𝕀 all: x:A. B[x] top: Top
Lemmas referenced :  interval-type-at I_cube_pair_redex_lemma top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalAxiom because_Cache

Latex:
\mforall{}[J,rho:Top].    (\mBbbI{}(rho)  \msim{}  Point(dM(J)))



Date html generated: 2018_05_23-AM-09_18_38
Last ObjectModification: 2018_05_20-PM-06_17_14

Theory : cubical!type!theory


Home Index