Nuprl Lemma : s-comp-nc-1-new

[I:fset(ℕ)]. (s ⋅ (new-name(I)1) 1 ∈ I ⟶ I)


Proof




Definitions occuring in Statement :  nc-1: (i1) nc-s: s new-name: new-name(I) add-name: I+i nh-comp: g ⋅ f nh-id: 1 names-hom: I ⟶ J fset: fset(T) nat: uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B true: True squash: T uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  names-hom_wf new-name_wf new-name-property nh-id_wf equal_wf s-comp-nc-1 iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut hypothesis because_Cache introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality sqequalRule natural_numberEquality lambdaEquality_alt imageElimination independent_isectElimination imageMemberEquality baseClosed equalityTransitivity equalitySymmetry productElimination independent_functionElimination

Latex:
\mforall{}[I:fset(\mBbbN{})].  (s  \mcdot{}  (new-name(I)1)  =  1)



Date html generated: 2020_05_20-PM-01_36_39
Last ObjectModification: 2020_01_06-AM-11_10_10

Theory : cubical!type!theory


Home Index