Nuprl Lemma : s-comp-if-lemma1

I,J:fset(ℕ). ∀f:J ⟶ I. ∀x:Point(dM(J)).  (s ⋅ λj.if (j =z new-name(I)) then else 1 ⋅ fi  f ∈ J ⟶ I)


Proof




Definitions occuring in Statement :  nc-s: s new-name: new-name(I) add-name: I+i nh-comp: g ⋅ f nh-id: 1 names-hom: I ⟶ J dM: dM(I) lattice-point: Point(l) fset: fset(T) nat: ifthenelse: if then else fi  eq_int: (i =z j) all: x:A. B[x] apply: a lambda: λx.A[x] equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] names-hom: I ⟶ J nc-s: s nh-id: 1 nh-comp: g ⋅ f dma-lift-compose: dma-lift-compose(I;J;eqi;eqj;f;g) compose: g dM: dM(I) dM-lift: dM-lift(I;J;f) member: t ∈ T squash: T uall: [x:A]. B[x] prop: subtype_rel: A ⊆B uimplies: supposing a nat: so_lambda: λ2x.t[x] so_apply: x[s] names: names(I) implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff uiff: uiff(P;Q) and: P ∧ Q exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False dma-hom: dma-hom(dma1;dma2) bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) true: True iff: ⇐⇒ Q rev_implies:  Q DeMorgan-algebra: DeMorganAlgebra label: ...$L... t ge: i ≥  decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top
Lemmas referenced :  equal_wf squash_wf true_wf dM-lift-inc add-name_wf new-name_wf nat_wf not_wf fset-member_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self eq_int_wf bool_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int dM-lift_wf dma-hom_wf dM_wf all_wf names_wf dM_inc_wf not-added-name names-subtype f-subset-add-name iff_weakening_equal eqtt_to_assert assert_of_eq_int lattice-point_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf names-hom_wf fset_wf deq_wf nat_properties decidable__equal_int full-omega-unsat intformand_wf intformnot_wf intformeq_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_wf decidable__le intformle_wf itermConstant_wf int_formula_prop_le_lemma int_term_value_constant_lemma new-name-property
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut functionExtensionality sqequalRule applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination introduction extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeEquality because_Cache setElimination rename setEquality intEquality independent_isectElimination natural_numberEquality unionElimination equalityElimination productElimination dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination voidElimination imageMemberEquality baseClosed productEquality approximateComputation int_eqEquality isect_memberEquality voidEquality independent_pairFormation dependent_set_memberEquality

Latex:
\mforall{}I,J:fset(\mBbbN{}).  \mforall{}f:J  {}\mrightarrow{}  I.  \mforall{}x:Point(dM(J)).
    (s  \mcdot{}  \mlambda{}j.if  (j  =\msubz{}  new-name(I))  then  x  else  1  \mcdot{}  f  j  fi    =  f)



Date html generated: 2018_05_23-AM-08_30_46
Last ObjectModification: 2017_11_26-PM-03_40_32

Theory : cubical!type!theory


Home Index