Nuprl Lemma : composition-type-lemma3

Gamma:j⊢. ∀phi:{Gamma ⊢ _:𝔽}. ∀A:{Gamma.𝕀 ⊢ _}. ∀u:{Gamma, phi.𝕀 ⊢ _:A}. ∀I,J:fset(ℕ). ∀f:J ⟶ I. ∀a:Gamma(I).
  ((u)<(s(f(a));<new-name(J)>)> iota
  ((u)<(s(a);<new-name(I)>)> iota)subset-trans(I+new-name(I);J+new-name(J);f,new-name(I)=new-name(J);s(phi(a)))
  ∈ {J+new-name(J),s(phi(f(a))) ⊢ _:(A)<(s(f(a));<new-name(J)>)> iota})


Proof




Definitions occuring in Statement :  context-subset: Gamma, phi face-type: 𝔽 interval-type: 𝕀 cc-adjoin-cube: (v;u) cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term-at: u(a) cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} subset-trans: subset-trans(I;J;f;x) subset-iota: iota cubical-subset: I,psi face-presheaf: 𝔽 csm-comp: F context-map: <rho> formal-cube: formal-cube(I) cube-set-restriction: f(s) I_cube: A(I) cubical_set: CubicalSet nc-e': g,i=j nc-s: s new-name: new-name(I) add-name: I+i names-hom: I ⟶ J dM_inc: <x> fset: fset(T) nat: all: x:A. B[x] equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B uimplies: supposing a interval-presheaf: 𝕀 names: names(I) nat: so_lambda: λ2x.t[x] so_apply: x[s] prop: squash: T cubical-type-at: A(a) pi1: fst(t) face-type: 𝔽 constant-cubical-type: (X) I_cube: A(I) functor-ob: ob(F) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q context-map: <rho> subset-iota: iota csm-comp: F compose: g cube-context-adjoin: X.A cc-adjoin-cube: (v;u) subset-trans: subset-trans(I;J;f;x) pi2: snd(t) bdd-distributive-lattice: BoundedDistributiveLattice uiff: uiff(P;Q) name-morph-satisfies: (psi f) 1 bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) context-subset: Gamma, phi DeMorgan-algebra: DeMorganAlgebra nc-e': g,i=j sq_type: SQType(T) names-hom: I ⟶ J cube_set_map: A ⟶ B psc_map: A ⟶ B nat-trans: nat-trans(C;D;F;G) cat-ob: cat-ob(C) op-cat: op-cat(C) spreadn: spread4 cube-cat: CubeCat fset: fset(T) quotient: x,y:A//B[x; y] cat-arrow: cat-arrow(C) type-cat: TypeCat cat-comp: cat-comp(C)
Lemmas referenced :  context-subset-adjoin-subtype interval-type_wf cc-adjoin-cube_wf add-name_wf new-name_wf cube-set-restriction_wf nc-s_wf f-subset-add-name interval-type-at I_cube_pair_redex_lemma dM_inc_wf trivial-member-add-name1 fset-member_wf nat_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf istype-int strong-subtype-self I_cube_wf equal_wf face-presheaf_wf2 cubical-term-at_wf face-type_wf subtype_rel_self fl-morph-restriction nc-e'_wf iff_weakening_equal nc-e'-lemma3 face-term-at-restriction nh-comp_wf cube-set-restriction-comp cubical-subset_wf squash_wf true_wf context-map-lemma2 names-hom_wf fset_wf istype-cubical-term cube-context-adjoin_wf context-subset_wf cubical_set_cumulativity-i-j thin-context-subset-adjoin cubical-type-cumulativity2 cubical-type_wf cubical_set_wf csm-equal cubical-subset-I_cube arrow_pair_lemma istype-cubical-type-at name-morph-satisfies-comp lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf lattice-meet_wf lattice-join_wf fl-morph_wf nh-comp-assoc istype-universe face-type-ap-morph cubical-term-at-morph fl-morph-comp2 interval-type-ap-morph member_wf dM_wf DeMorgan-algebra-structure_wf DeMorgan-algebra-structure-subtype subtype_rel_transitivity DeMorgan-algebra-axioms_wf dM-lift-inc nh-comp-sq subtype_base_sq bool_wf bool_subtype_base eq_int_eq_true_intro btrue_wf csm-ap-comp-term cube_set_map_wf subset-trans_wf cubical-term_wf csm-ap-type_wf equal_functionality_wrt_subtype_rel2 csm-ap-term_wf subtype_rel_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality hypothesis isect_memberFormation_alt dependent_functionElimination applyEquality sqequalRule independent_isectElimination Error :memTop,  dependent_set_memberEquality_alt lambdaEquality_alt setElimination rename inhabitedIsType equalityTransitivity equalitySymmetry universeIsType intEquality natural_numberEquality axiomEquality instantiate imageElimination imageMemberEquality baseClosed productElimination independent_functionElimination functionExtensionality dependent_pairEquality_alt productEquality cumulativity isectEquality universeEquality equalityIstype hyp_replacement independent_pairFormation productIsType applyLambdaEquality

Latex:
\mforall{}Gamma:j\mvdash{}.  \mforall{}phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}.  \mforall{}A:\{Gamma.\mBbbI{}  \mvdash{}  \_\}.  \mforall{}u:\{Gamma,  phi.\mBbbI{}  \mvdash{}  \_:A\}.  \mforall{}I,J:fset(\mBbbN{}).  \mforall{}f:J  {}\mrightarrow{}  I.
\mforall{}a:Gamma(I).
    ((u)<(s(f(a));<new-name(J)>)>  o  iota
    =  ((u)<(s(a);<new-name(I)>)>  o  iota)subset-trans(I+new-name(I);J+new-name(J);
                                                                                                      f,new-name(I)=new-name(J);s(phi(a))))



Date html generated: 2020_05_20-PM-04_09_10
Last ObjectModification: 2020_04_17-PM-03_54_03

Theory : cubical!type!theory


Home Index