Nuprl Lemma : context-map-lemma2

[Gamma:j⊢]. ∀[phi:{Gamma ⊢ _:𝔽}]. ∀[I:fset(ℕ)]. ∀[rho:Gamma(I)].
  (<(s(rho);<new-name(I)>)> ∈ I+new-name(I),s(phi(rho)) j⟶ Gamma, phi.𝕀)


Proof




Definitions occuring in Statement :  context-subset: Gamma, phi face-type: 𝔽 interval-type: 𝕀 cc-adjoin-cube: (v;u) cube-context-adjoin: X.A cubical-term-at: u(a) cubical-term: {X ⊢ _:A} cubical-subset: I,psi face-presheaf: 𝔽 context-map: <rho> cube_set_map: A ⟶ B cube-set-restriction: f(s) I_cube: A(I) cubical_set: CubicalSet nc-s: s new-name: new-name(I) add-name: I+i dM_inc: <x> fset: fset(T) nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q uimplies: supposing a subtype_rel: A ⊆B cubical-type-at: A(a) pi1: fst(t) face-type: 𝔽 constant-cubical-type: (X) I_cube: A(I) functor-ob: ob(F) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt cubical-term: {X ⊢ _:A} interval-presheaf: 𝕀 names-hom: I ⟶ J names: names(I) nat: so_lambda: λ2x.t[x] so_apply: x[s] prop: compose: g DeMorgan-algebra: DeMorganAlgebra and: P ∧ Q guard: {T} cube_set_map: A ⟶ B psc_map: A ⟶ B nat-trans: nat-trans(C;D;F;G) cat-ob: cat-ob(C) op-cat: op-cat(C) spreadn: spread4 cube-cat: CubeCat fset: fset(T) quotient: x,y:A//B[x; y] cat-arrow: cat-arrow(C) pi2: snd(t) type-cat: TypeCat cat-comp: cat-comp(C) cc-adjoin-cube: (v;u) cube-context-adjoin: X.A context-map: <rho> bdd-distributive-lattice: BoundedDistributiveLattice uiff: uiff(P;Q) csm-adjoin: (s;u) functor-arrow: arrow(F) csm-ap: (s)x true: True name-morph-satisfies: (psi f) 1 squash: T iff: ⇐⇒ Q rev_implies:  Q context-subset: Gamma, phi cube-set-restriction: f(s)
Lemmas referenced :  I_cube_wf fset_wf nat_wf istype-cubical-term face-type_wf cubical_set_wf new-name_wf context-map-lemma1 csm-adjoin_wf context-subset_wf cubical-subset_wf add-name_wf cube-set-restriction_wf face-presheaf_wf2 nc-s_wf f-subset-add-name cubical-term-at_wf subtype_rel_self interval-type_wf cubical-subset-I_cube I_cube_pair_redex_lemma csm-ap-type-at interval-type-at trivial-member-add-name1 fset-member_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf istype-int strong-subtype-self names-hom_wf csm-interval-type interval-type-ap-morph cubical-subset-restriction nh-comp-sq dM-lift_wf2 lattice-point_wf dM_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf equal_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf istype-cubical-type-at csm-ap-type_wf cube_set_map_wf cubical_set_cumulativity-i-j cubical-type-ap-morph_wf csm-equal cube-context-adjoin_wf arrow_pair_lemma name-morph-satisfies-comp face_lattice_wf lattice-1_wf cubical-term-at-morph nh-comp_wf iff_weakening_equal face-type-ap-morph squash_wf true_wf istype-universe cubical-type-cumulativity2 cubical-type_wf cube-set-restriction-comp dM_inc_wf dM-lift-inc
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut sqequalHypSubstitution hypothesis universeIsType introduction extract_by_obid isectElimination thin hypothesisEquality instantiate inhabitedIsType lambdaFormation_alt setElimination rename equalityIstype equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination because_Cache independent_isectElimination applyEquality sqequalRule dependent_set_memberEquality_alt lambdaEquality_alt Error :memTop,  intEquality natural_numberEquality productEquality cumulativity isectEquality hyp_replacement functionIsType functionExtensionality productElimination imageElimination imageMemberEquality baseClosed universeEquality dependent_pairEquality_alt

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[rho:Gamma(I)].
    (<(s(rho);<new-name(I)>)>  \mmember{}  I+new-name(I),s(phi(rho))  j{}\mrightarrow{}  Gamma,  phi.\mBbbI{})



Date html generated: 2020_05_20-PM-04_07_54
Last ObjectModification: 2020_04_17-PM-02_41_01

Theory : cubical!type!theory


Home Index