Nuprl Lemma : interval-type-ap-morph
∀[I,J,f,rho,u:Top].  ((u rho f) ~ dM-lift(J;I;f) u)
Proof
Definitions occuring in Statement : 
interval-type: 𝕀, 
cubical-type-ap-morph: (u a f), 
dM-lift: dM-lift(I;J;f), 
uall: ∀[x:A]. B[x], 
top: Top, 
apply: f a, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
interval-type: 𝕀, 
cubical-type-ap-morph: (u a f), 
constant-cubical-type: (X), 
pi2: snd(t)
Lemmas referenced : 
top_wf, 
interval-presheaf-restriction
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalAxiom, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[I,J,f,rho,u:Top].    ((u  rho  f)  \msim{}  dM-lift(J;I;f)  u)
Date html generated:
2016_05_18-PM-01_59_49
Last ObjectModification:
2016_03_03-PM-02_25_34
Theory : cubical!type!theory
Home
Index