Nuprl Lemma : interval-type-ap-morph

[I,J,f,rho,u:Top].  ((u rho f) dM-lift(J;I;f) u)


Proof




Definitions occuring in Statement :  interval-type: 𝕀 cubical-type-ap-morph: (u f) dM-lift: dM-lift(I;J;f) uall: [x:A]. B[x] top: Top apply: a sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T interval-type: 𝕀 cubical-type-ap-morph: (u f) constant-cubical-type: (X) pi2: snd(t)
Lemmas referenced :  top_wf interval-presheaf-restriction
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalAxiom isect_memberEquality because_Cache

Latex:
\mforall{}[I,J,f,rho,u:Top].    ((u  rho  f)  \msim{}  dM-lift(J;I;f)  u)



Date html generated: 2016_05_18-PM-01_59_49
Last ObjectModification: 2016_03_03-PM-02_25_34

Theory : cubical!type!theory


Home Index