Nuprl Lemma : cc-adjoin-cube_wf

X:j⊢. ∀A:{X ⊢ _}. ∀J:fset(ℕ). ∀v:X(J). ∀u:A(v).  ((v;u) ∈ X.A(J))


Proof




Definitions occuring in Statement :  cc-adjoin-cube: (v;u) cube-context-adjoin: X.A cubical-type-at: A(a) cubical-type: {X ⊢ _} I_cube: A(I) cubical_set: CubicalSet fset: fset(T) nat: all: x:A. B[x] member: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T cubical_set: CubicalSet uall: [x:A]. B[x] cube-cat: CubeCat I_cube: A(I) I_set: A(I) cubical-type-at: A(a) presheaf-type-at: A(a) cube-context-adjoin: X.A psc-adjoin: X.A cube-set-restriction: f(s) psc-restriction: f(s) cubical-type-ap-morph: (u f) presheaf-type-ap-morph: (u f) cc-adjoin-cube: (v;u) psc-adjoin-set: (v;u)
Lemmas referenced :  psc-adjoin-set_wf cube-cat_wf cubical-type-sq-presheaf-type cat_ob_pair_lemma
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity dependent_functionElimination thin hypothesis sqequalRule isectElimination Error :memTop

Latex:
\mforall{}X:j\mvdash{}.  \mforall{}A:\{X  \mvdash{}  \_\}.  \mforall{}J:fset(\mBbbN{}).  \mforall{}v:X(J).  \mforall{}u:A(v).    ((v;u)  \mmember{}  X.A(J))



Date html generated: 2020_05_20-PM-01_54_36
Last ObjectModification: 2020_04_03-PM-08_29_10

Theory : cubical!type!theory


Home Index