Nuprl Lemma : psc-adjoin-set_wf

C:SmallCategory. ∀X:ps_context{j:l}(C). ∀A:{X ⊢ _}. ∀J:cat-ob(C). ∀v:X(J). ∀u:A(v).  ((v;u) ∈ X.A(J))


Proof




Definitions occuring in Statement :  psc-adjoin-set: (v;u) psc-adjoin: X.A presheaf-type-at: A(a) presheaf-type: {X ⊢ _} I_set: A(I) ps_context: __⊢ all: x:A. B[x] member: t ∈ T cat-ob: cat-ob(C) small-category: SmallCategory
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T presheaf-type: {X ⊢ _} psc-adjoin-set: (v;u) psc-adjoin: X.A I_set: A(I) functor-ob: ob(F) presheaf-type-at: A(a) pi1: fst(t) uall: [x:A]. B[x] subtype_rel: A ⊆B
Lemmas referenced :  ob_pair_lemma presheaf_type_at_pair_lemma presheaf-type-at_wf I_set_wf cat-ob_wf presheaf-type_wf ps_context_wf small-category-cumulativity-2 small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut sqequalHypSubstitution setElimination thin rename productElimination sqequalRule introduction extract_by_obid dependent_functionElimination Error :memTop,  hypothesis dependent_pairEquality_alt hypothesisEquality universeIsType applyEquality isectElimination instantiate

Latex:
\mforall{}C:SmallCategory.  \mforall{}X:ps\_context\{j:l\}(C).  \mforall{}A:\{X  \mvdash{}  \_\}.  \mforall{}J:cat-ob(C).  \mforall{}v:X(J).  \mforall{}u:A(v).
    ((v;u)  \mmember{}  X.A(J))



Date html generated: 2020_05_20-PM-01_27_17
Last ObjectModification: 2020_04_02-AM-11_21_02

Theory : presheaf!models!of!type!theory


Home Index