Nuprl Lemma : psc-adjoin-set_wf
∀C:SmallCategory. ∀X:ps_context{j:l}(C). ∀A:{X ⊢ _}. ∀J:cat-ob(C). ∀v:X(J). ∀u:A(v).  ((v;u) ∈ X.A(J))
Proof
Definitions occuring in Statement : 
psc-adjoin-set: (v;u)
, 
psc-adjoin: X.A
, 
presheaf-type-at: A(a)
, 
presheaf-type: {X ⊢ _}
, 
I_set: A(I)
, 
ps_context: __⊢
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
cat-ob: cat-ob(C)
, 
small-category: SmallCategory
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
presheaf-type: {X ⊢ _}
, 
psc-adjoin-set: (v;u)
, 
psc-adjoin: X.A
, 
I_set: A(I)
, 
functor-ob: ob(F)
, 
presheaf-type-at: A(a)
, 
pi1: fst(t)
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
ob_pair_lemma, 
presheaf_type_at_pair_lemma, 
presheaf-type-at_wf, 
I_set_wf, 
cat-ob_wf, 
presheaf-type_wf, 
ps_context_wf, 
small-category-cumulativity-2, 
small-category_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
productElimination, 
sqequalRule, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
Error :memTop, 
hypothesis, 
dependent_pairEquality_alt, 
hypothesisEquality, 
universeIsType, 
applyEquality, 
isectElimination, 
instantiate
Latex:
\mforall{}C:SmallCategory.  \mforall{}X:ps\_context\{j:l\}(C).  \mforall{}A:\{X  \mvdash{}  \_\}.  \mforall{}J:cat-ob(C).  \mforall{}v:X(J).  \mforall{}u:A(v).
    ((v;u)  \mmember{}  X.A(J))
Date html generated:
2020_05_20-PM-01_27_17
Last ObjectModification:
2020_04_02-AM-11_21_02
Theory : presheaf!models!of!type!theory
Home
Index