Nuprl Lemma : composition-type-lemma2
∀[Gamma:j⊢]. ∀[A:{Gamma.𝕀 ⊢ _}]. ∀[I:fset(ℕ)]. ∀[rho:Gamma(I)].
  (A((new-name(I)1)((s(rho);<new-name(I)>))) = (A)[1(𝕀)](rho) ∈ Type)
Proof
Definitions occuring in Statement : 
interval-1: 1(𝕀)
, 
interval-type: 𝕀
, 
csm-id-adjoin: [u]
, 
cc-adjoin-cube: (v;u)
, 
cube-context-adjoin: X.A
, 
csm-ap-type: (AF)s
, 
cubical-type-at: A(a)
, 
cubical-type: {X ⊢ _}
, 
cube-set-restriction: f(s)
, 
I_cube: A(I)
, 
cubical_set: CubicalSet
, 
nc-1: (i1)
, 
nc-s: s
, 
new-name: new-name(I)
, 
add-name: I+i
, 
dM_inc: <x>
, 
fset: fset(T)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
squash: ↓T
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
true: True
Lemmas referenced : 
I_cube_wf, 
fset_wf, 
nat_wf, 
cubical-type_wf, 
cube-context-adjoin_wf, 
cubical_set_cumulativity-i-j, 
interval-type_wf, 
cubical_set_wf, 
csm-ap-type-at, 
cubical-type-at_wf, 
squash_wf, 
true_wf, 
csm-ap-interval-1-adjoin-lemma, 
new-name_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
hypothesis, 
universeIsType, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
inhabitedIsType, 
instantiate, 
applyEquality, 
Error :memTop, 
lambdaEquality_alt, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[rho:Gamma(I)].
    (A((new-name(I)1)((s(rho);<new-name(I)>)))  =  (A)[1(\mBbbI{})](rho))
Date html generated:
2020_05_20-PM-04_07_12
Last ObjectModification:
2020_04_10-AM-03_44_12
Theory : cubical!type!theory
Home
Index