Nuprl Lemma : composition-type-lemma2

[Gamma:j⊢]. ∀[A:{Gamma.𝕀 ⊢ _}]. ∀[I:fset(ℕ)]. ∀[rho:Gamma(I)].
  (A((new-name(I)1)((s(rho);<new-name(I)>))) (A)[1(𝕀)](rho) ∈ Type)


Proof




Definitions occuring in Statement :  interval-1: 1(𝕀) interval-type: 𝕀 csm-id-adjoin: [u] cc-adjoin-cube: (v;u) cube-context-adjoin: X.A csm-ap-type: (AF)s cubical-type-at: A(a) cubical-type: {X ⊢ _} cube-set-restriction: f(s) I_cube: A(I) cubical_set: CubicalSet nc-1: (i1) nc-s: s new-name: new-name(I) add-name: I+i dM_inc: <x> fset: fset(T) nat: uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B squash: T prop: all: x:A. B[x] true: True
Lemmas referenced :  I_cube_wf fset_wf nat_wf cubical-type_wf cube-context-adjoin_wf cubical_set_cumulativity-i-j interval-type_wf cubical_set_wf csm-ap-type-at cubical-type-at_wf squash_wf true_wf csm-ap-interval-1-adjoin-lemma new-name_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut hypothesis universeIsType extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType instantiate applyEquality Error :memTop,  lambdaEquality_alt imageElimination equalityTransitivity equalitySymmetry dependent_functionElimination natural_numberEquality imageMemberEquality baseClosed

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[rho:Gamma(I)].
    (A((new-name(I)1)((s(rho);<new-name(I)>)))  =  (A)[1(\mBbbI{})](rho))



Date html generated: 2020_05_20-PM-04_07_12
Last ObjectModification: 2020_04_10-AM-03_44_12

Theory : cubical!type!theory


Home Index