Nuprl Lemma : face-type-comp-at-lemma

[H:j⊢]. ∀[phi:{H ⊢ _:𝔽}]. ∀[I,J:fset(ℕ)]. ∀[i:ℕ]. ∀[f:J ⟶ I+i]. ∀[v:H(I)].  (phi(f(s(v))) f(s(phi(v))) ∈ 𝔽(f))


Proof




Definitions occuring in Statement :  face-type: 𝔽 cubical-term-at: u(a) cubical-term: {X ⊢ _:A} cubical-type-at: A(a) face-presheaf: 𝔽 cube-set-restriction: f(s) I_cube: A(I) cubical_set: CubicalSet nc-s: s add-name: I+i names-hom: I ⟶ J fset: fset(T) nat: uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T squash: T prop: uimplies: supposing a all: x:A. B[x] subtype_rel: A ⊆B cubical-type-at: A(a) pi1: fst(t) face-type: 𝔽 constant-cubical-type: (X) I_cube: A(I) functor-ob: ob(F) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  I_cube_wf names-hom_wf add-name_wf istype-nat fset_wf nat_wf cubical-term_wf face-type_wf cubical_set_wf equal_wf squash_wf true_wf istype-universe cubical-type-at_wf_face-type cubical-term-at-morph cube-set-restriction_wf nc-s_wf f-subset-add-name subtype_rel-equal face-presheaf_wf2 cubical-term-at_wf subtype_rel_self iff_weakening_equal face-type-ap-morph cube_set_restriction_pair_lemma fl-morph_wf lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf lattice-meet_wf lattice-join_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis because_Cache instantiate applyEquality lambdaEquality_alt imageElimination equalityTransitivity equalitySymmetry universeEquality Error :memTop,  independent_isectElimination dependent_functionElimination sqequalRule natural_numberEquality imageMemberEquality baseClosed productElimination independent_functionElimination setElimination rename inhabitedIsType productEquality cumulativity isectEquality

Latex:
\mforall{}[H:j\mvdash{}].  \mforall{}[phi:\{H  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[I,J:fset(\mBbbN{})].  \mforall{}[i:\mBbbN{}].  \mforall{}[f:J  {}\mrightarrow{}  I+i].  \mforall{}[v:H(I)].
    (phi(f(s(v)))  =  f(s(phi(v))))



Date html generated: 2020_05_20-PM-04_24_15
Last ObjectModification: 2020_04_10-AM-06_17_21

Theory : cubical!type!theory


Home Index