Nuprl Lemma : csm-ap-term-wf-subset

[H:j⊢]. ∀[phi:{H ⊢ _:𝔽}]. ∀[A:{H ⊢ _}]. ∀[t:{H, phi ⊢ _:A}]. ∀[K:j⊢]. ∀[psi:{K ⊢ _:𝔽}]. ∀[B:{K ⊢ _}]. ∀[tau:K j⟶ H].
  ((t)tau ∈ {K, psi ⊢ _:B}) supposing (K, psi ⊢ (A)tau and K ⊢ (psi  (phi)tau))


Proof




Definitions occuring in Statement :  same-cubical-type: Gamma ⊢ B face-term-implies: Gamma ⊢ (phi  psi) context-subset: Gamma, phi face-type: 𝔽 csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T subtype_rel: A ⊆B prop: guard: {T} same-cubical-type: Gamma ⊢ B and: P ∧ Q
Lemmas referenced :  csm-ap-term_wf context-subset_wf face-type_wf csm-face-type thin-context-subset context-subset-map face-term-implies-subtype csm-ap-type_wf same-cubical-type_wf face-term-implies_wf cube_set_map_wf cubical-type_wf cubical-term_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule Error :memTop,  equalityTransitivity equalitySymmetry because_Cache applyEquality independent_isectElimination universeIsType instantiate inhabitedIsType dependent_set_memberEquality_alt independent_pairFormation productIsType equalityIstype applyLambdaEquality setElimination rename productElimination lambdaEquality_alt hyp_replacement

Latex:
\mforall{}[H:j\mvdash{}].  \mforall{}[phi:\{H  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A:\{H  \mvdash{}  \_\}].  \mforall{}[t:\{H,  phi  \mvdash{}  \_:A\}].  \mforall{}[K:j\mvdash{}].  \mforall{}[psi:\{K  \mvdash{}  \_:\mBbbF{}\}].
\mforall{}[B:\{K  \mvdash{}  \_\}].  \mforall{}[tau:K  j{}\mrightarrow{}  H].
    ((t)tau  \mmember{}  \{K,  psi  \mvdash{}  \_:B\})  supposing  (K,  psi  \mvdash{}  B  =  (A)tau  and  K  \mvdash{}  (psi  {}\mRightarrow{}  (phi)tau))



Date html generated: 2020_05_20-PM-03_04_05
Last ObjectModification: 2020_04_06-PM-00_02_28

Theory : cubical!type!theory


Home Index