Nuprl Lemma : csm-ap-term-wf-subset
∀[H:j⊢]. ∀[phi:{H ⊢ _:𝔽}]. ∀[A:{H ⊢ _}]. ∀[t:{H, phi ⊢ _:A}]. ∀[K:j⊢]. ∀[psi:{K ⊢ _:𝔽}]. ∀[B:{K ⊢ _}]. ∀[tau:K j⟶ H].
  ((t)tau ∈ {K, psi ⊢ _:B}) supposing (K, psi ⊢ B = (A)tau and K ⊢ (psi 
⇒ (phi)tau))
Proof
Definitions occuring in Statement : 
same-cubical-type: Gamma ⊢ A = B
, 
face-term-implies: Gamma ⊢ (phi 
⇒ psi)
, 
context-subset: Gamma, phi
, 
face-type: 𝔽
, 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:A}
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cube_set_map: A ⟶ B
, 
cubical_set: CubicalSet
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
guard: {T}
, 
same-cubical-type: Gamma ⊢ A = B
, 
and: P ∧ Q
Lemmas referenced : 
csm-ap-term_wf, 
context-subset_wf, 
face-type_wf, 
csm-face-type, 
thin-context-subset, 
context-subset-map, 
face-term-implies-subtype, 
csm-ap-type_wf, 
same-cubical-type_wf, 
face-term-implies_wf, 
cube_set_map_wf, 
cubical-type_wf, 
cubical-term_wf, 
cubical-type-cumulativity2, 
cubical_set_cumulativity-i-j, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
Error :memTop, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
applyEquality, 
independent_isectElimination, 
universeIsType, 
instantiate, 
inhabitedIsType, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
productIsType, 
equalityIstype, 
applyLambdaEquality, 
setElimination, 
rename, 
productElimination, 
lambdaEquality_alt, 
hyp_replacement
Latex:
\mforall{}[H:j\mvdash{}].  \mforall{}[phi:\{H  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A:\{H  \mvdash{}  \_\}].  \mforall{}[t:\{H,  phi  \mvdash{}  \_:A\}].  \mforall{}[K:j\mvdash{}].  \mforall{}[psi:\{K  \mvdash{}  \_:\mBbbF{}\}].
\mforall{}[B:\{K  \mvdash{}  \_\}].  \mforall{}[tau:K  j{}\mrightarrow{}  H].
    ((t)tau  \mmember{}  \{K,  psi  \mvdash{}  \_:B\})  supposing  (K,  psi  \mvdash{}  B  =  (A)tau  and  K  \mvdash{}  (psi  {}\mRightarrow{}  (phi)tau))
Date html generated:
2020_05_20-PM-03_04_05
Last ObjectModification:
2020_04_06-PM-00_02_28
Theory : cubical!type!theory
Home
Index