Nuprl Lemma : face-term-implies-subtype

[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[phi,psi:{Gamma ⊢ _:𝔽}].
  {Gamma, phi ⊢ _:A} ⊆{Gamma, psi ⊢ _:A} supposing Gamma ⊢ (psi  phi)


Proof




Definitions occuring in Statement :  face-term-implies: Gamma ⊢ (phi  psi) context-subset: Gamma, phi face-type: 𝔽 cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B prop:
Lemmas referenced :  face-term-implies_wf subset-cubical-term context-subset_wf thin-context-subset face-term-implies-subset
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule axiomEquality hypothesis universeIsType thin instantiate extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality isect_memberEquality_alt isectIsTypeImplies inhabitedIsType because_Cache independent_isectElimination

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[phi,psi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].
    \{Gamma,  phi  \mvdash{}  \_:A\}  \msubseteq{}r  \{Gamma,  psi  \mvdash{}  \_:A\}  supposing  Gamma  \mvdash{}  (psi  {}\mRightarrow{}  phi)



Date html generated: 2020_05_20-PM-02_55_47
Last ObjectModification: 2020_04_06-AM-10_31_11

Theory : cubical!type!theory


Home Index