Nuprl Lemma : empty-context-subset-lemma4

[Gamma:j⊢]. ∀[B:{Gamma ⊢ _}]. ∀[A,x,y:Top].  (x y ∈ {Gamma, 0(𝔽).B ⊢ _:A})


Proof




Definitions occuring in Statement :  context-subset: Gamma, phi face-0: 0(𝔽) cube-context-adjoin: X.A cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] top: Top equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] cubical-term: {X ⊢ _:A} context-subset: Gamma, phi cube-context-adjoin: X.A all: x:A. B[x] member: t ∈ T face-0: 0(𝔽) cubical-term-at: u(a) not: ¬A implies:  Q false: False subtype_rel: A ⊆B guard: {T}
Lemmas referenced :  I_cube_pair_redex_lemma face-lattice-0-not-1 I_cube_wf cube-context-adjoin_wf context-subset_wf cubical_set_cumulativity-i-j face-0_wf thin-context-subset cubical-type-cumulativity2 fset_wf nat_wf names-hom_wf istype-top cubical-type_wf cubical_set_wf istype-cubical-type-at cube-set-restriction_wf cubical-type-ap-morph_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut dependent_set_memberEquality_alt functionExtensionality sqequalHypSubstitution introduction extract_by_obid dependent_functionElimination thin Error :memTop,  hypothesis sqequalRule productElimination setElimination rename isectElimination hypothesisEquality independent_functionElimination voidElimination instantiate applyEquality because_Cache equalityTransitivity equalitySymmetry lambdaFormation_alt universeIsType inhabitedIsType functionIsType equalityIstype

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[B:\{Gamma  \mvdash{}  \_\}].  \mforall{}[A,x,y:Top].    (x  =  y)



Date html generated: 2020_05_20-PM-04_13_25
Last ObjectModification: 2020_04_10-AM-04_40_46

Theory : cubical!type!theory


Home Index