Nuprl Lemma : face-0_wf

[Gamma:j⊢]. (0(𝔽) ∈ {Gamma ⊢ _:𝔽})


Proof




Definitions occuring in Statement :  face-0: 0(𝔽) face-type: 𝔽 cubical-term: {X ⊢ _:A} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical-term: {X ⊢ _:A} face-0: 0(𝔽) subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt cubical-type-at: A(a) pi1: fst(t) face-type: 𝔽 constant-cubical-type: (X) I_cube: A(I) functor-ob: ob(F) face-presheaf: 𝔽 all: x:A. B[x] cubical-type-ap-morph: (u f) pi2: snd(t) cube-set-restriction: f(s) fl-morph: <f> fl-lift: fl-lift(T;eq;L;eqL;f0;f1) face-lattice-property free-dist-lattice-with-constraints-property lattice-extend-wc: lattice-extend-wc(L;eq;eqL;f;ac) lattice-extend: lattice-extend(L;eq;eqL;f;ac) lattice-fset-join: \/(s) reduce: reduce(f;k;as) list_ind: list_ind fset-image: f"(s) f-union: f-union(domeq;rngeq;s;x.g[x]) list_accum: list_accum lattice-0: 0 empty-fset: {} nil: [] it:
Lemmas referenced :  lattice-0_wf face_lattice_wf subtype_rel_self cubical-type-at_wf_face-type I_cube_wf fset_wf nat_wf names-hom_wf istype-cubical-type-at cube-set-restriction_wf face-type_wf cubical-type-ap-morph_wf cubical_set_wf face-lattice-property free-dist-lattice-with-constraints-property
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut dependent_set_memberEquality_alt lambdaEquality_alt extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality setElimination rename inhabitedIsType equalityTransitivity equalitySymmetry sqequalRule Error :memTop,  universeIsType lambdaFormation_alt because_Cache functionIsType equalityIstype instantiate axiomEquality

Latex:
\mforall{}[Gamma:j\mvdash{}].  (0(\mBbbF{})  \mmember{}  \{Gamma  \mvdash{}  \_:\mBbbF{}\})



Date html generated: 2020_05_20-PM-02_40_29
Last ObjectModification: 2020_04_04-PM-04_48_24

Theory : cubical!type!theory


Home Index