Nuprl Lemma : face-0_wf
∀[Gamma:j⊢]. (0(𝔽) ∈ {Gamma ⊢ _:𝔽})
Proof
Definitions occuring in Statement : 
face-0: 0(𝔽)
, 
face-type: 𝔽
, 
cubical-term: {X ⊢ _:A}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cubical-term: {X ⊢ _:A}
, 
face-0: 0(𝔽)
, 
subtype_rel: A ⊆r B
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
lattice-point: Point(l)
, 
record-select: r.x
, 
face_lattice: face_lattice(I)
, 
face-lattice: face-lattice(T;eq)
, 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x])
, 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
btrue: tt
, 
cubical-type-at: A(a)
, 
pi1: fst(t)
, 
face-type: 𝔽
, 
constant-cubical-type: (X)
, 
I_cube: A(I)
, 
functor-ob: ob(F)
, 
face-presheaf: 𝔽
, 
all: ∀x:A. B[x]
, 
cubical-type-ap-morph: (u a f)
, 
pi2: snd(t)
, 
cube-set-restriction: f(s)
, 
fl-morph: <f>
, 
fl-lift: fl-lift(T;eq;L;eqL;f0;f1)
, 
face-lattice-property, 
free-dist-lattice-with-constraints-property, 
lattice-extend-wc: lattice-extend-wc(L;eq;eqL;f;ac)
, 
lattice-extend: lattice-extend(L;eq;eqL;f;ac)
, 
lattice-fset-join: \/(s)
, 
reduce: reduce(f;k;as)
, 
list_ind: list_ind, 
fset-image: f"(s)
, 
f-union: f-union(domeq;rngeq;s;x.g[x])
, 
list_accum: list_accum, 
lattice-0: 0
, 
empty-fset: {}
, 
nil: []
, 
it: ⋅
Lemmas referenced : 
lattice-0_wf, 
face_lattice_wf, 
subtype_rel_self, 
cubical-type-at_wf_face-type, 
I_cube_wf, 
fset_wf, 
nat_wf, 
names-hom_wf, 
istype-cubical-type-at, 
cube-set-restriction_wf, 
face-type_wf, 
cubical-type-ap-morph_wf, 
cubical_set_wf, 
face-lattice-property, 
free-dist-lattice-with-constraints-property
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
dependent_set_memberEquality_alt, 
lambdaEquality_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
setElimination, 
rename, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
sqequalRule, 
Error :memTop, 
universeIsType, 
lambdaFormation_alt, 
because_Cache, 
functionIsType, 
equalityIstype, 
instantiate, 
axiomEquality
Latex:
\mforall{}[Gamma:j\mvdash{}].  (0(\mBbbF{})  \mmember{}  \{Gamma  \mvdash{}  \_:\mBbbF{}\})
Date html generated:
2020_05_20-PM-02_40_29
Last ObjectModification:
2020_04_04-PM-04_48_24
Theory : cubical!type!theory
Home
Index