Nuprl Lemma : transport_wf

[Gamma:j⊢]. ∀[A:{Gamma.𝕀 ⊢ _}]. ∀[cA:Gamma.𝕀 ⊢ CompOp(A)]. ∀[a:{Gamma ⊢ _:(A)[0(𝕀)]}].
  (transport(Gamma;a) ∈ {Gamma ⊢ _:(A)[1(𝕀)]})


Proof




Definitions occuring in Statement :  transport: transport(Gamma;a) composition-op: Gamma ⊢ CompOp(A) interval-1: 1(𝕀) interval-0: 0(𝕀) interval-type: 𝕀 csm-id-adjoin: [u] cube-context-adjoin: X.A cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T transport: transport(Gamma;a) subtype_rel: A ⊆B constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} uimplies: supposing a
Lemmas referenced :  istype-cubical-term csm-ap-type_wf cube-context-adjoin_wf cubical_set_cumulativity-i-j interval-type_wf csm-id-adjoin_wf-interval-0 composition-op_wf cubical-type-cumulativity2 cubical-type_wf cubical_set_wf composition-term_wf face-0_wf empty-context-subset-lemma4 empty-context-subset-lemma3 subset-cubical-term context-subset_wf context-subset-is-subset constrained-cubical-term_wf csm-id-adjoin_wf-interval-1 empty-context-subset-lemma2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry extract_by_obid isectElimination thin hypothesisEquality instantiate applyEquality because_Cache isect_memberEquality_alt isectIsTypeImplies inhabitedIsType universeIsType Error :memTop,  dependent_set_memberEquality_alt equalityIstype independent_isectElimination lambdaEquality_alt setElimination rename

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[cA:Gamma.\mBbbI{}  \mvdash{}  CompOp(A)].  \mforall{}[a:\{Gamma  \mvdash{}  \_:(A)[0(\mBbbI{})]\}].
    (transport(Gamma;a)  \mmember{}  \{Gamma  \mvdash{}  \_:(A)[1(\mBbbI{})]\})



Date html generated: 2020_05_20-PM-04_18_17
Last ObjectModification: 2020_04_19-PM-07_36_27

Theory : cubical!type!theory


Home Index