Nuprl Lemma : cubical-id-equiv_wf
∀X:j⊢. ∀T:{X ⊢ _}.  (IdEquiv(X;T) ∈ {X ⊢ _:Equiv(T;T)})
Proof
Definitions occuring in Statement : 
cubical-id-equiv: IdEquiv(X;T)
, 
cubical-equiv: Equiv(T;A)
, 
cubical-term: {X ⊢ _:A}
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
cubical-id-equiv: IdEquiv(X;T)
Lemmas referenced : 
cubical-id-fun_wf, 
cubical-type_wf, 
cubical_set_wf, 
cubical-id-is-equiv_wf, 
equiv-witness_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
universeIsType, 
instantiate, 
because_Cache, 
dependent_functionElimination
Latex:
\mforall{}X:j\mvdash{}.  \mforall{}T:\{X  \mvdash{}  \_\}.    (IdEquiv(X;T)  \mmember{}  \{X  \mvdash{}  \_:Equiv(T;T)\})
Date html generated:
2020_05_20-PM-03_34_10
Last ObjectModification:
2020_04_06-PM-06_55_53
Theory : cubical!type!theory
Home
Index