Nuprl Lemma : cubical-id-equiv_wf

X:j⊢. ∀T:{X ⊢ _}.  (IdEquiv(X;T) ∈ {X ⊢ _:Equiv(T;T)})


Proof




Definitions occuring in Statement :  cubical-id-equiv: IdEquiv(X;T) cubical-equiv: Equiv(T;A) cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet all: x:A. B[x] member: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] cubical-id-equiv: IdEquiv(X;T)
Lemmas referenced :  cubical-id-fun_wf cubical-type_wf cubical_set_wf cubical-id-is-equiv_wf equiv-witness_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis universeIsType instantiate because_Cache dependent_functionElimination

Latex:
\mforall{}X:j\mvdash{}.  \mforall{}T:\{X  \mvdash{}  \_\}.    (IdEquiv(X;T)  \mmember{}  \{X  \mvdash{}  \_:Equiv(T;T)\})



Date html generated: 2020_05_20-PM-03_34_10
Last ObjectModification: 2020_04_06-PM-06_55_53

Theory : cubical!type!theory


Home Index