Nuprl Lemma : cubical-equiv_wf

[X:j⊢]. ∀[T,A:{X ⊢ _}].  X ⊢ Equiv(T;A)


Proof




Definitions occuring in Statement :  cubical-equiv: Equiv(T;A) cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical-equiv: Equiv(T;A) subtype_rel: A ⊆B all: x:A. B[x]
Lemmas referenced :  cubical-sigma_wf cubical-fun_wf is-cubical-equiv_wf cube-context-adjoin_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 csm-ap-type_wf cc-fst_wf cc-snd_wf-cubical-fun cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis instantiate applyEquality because_Cache dependent_functionElimination axiomEquality equalityTransitivity equalitySymmetry inhabitedIsType isect_memberEquality_alt isectIsTypeImplies universeIsType

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[T,A:\{X  \mvdash{}  \_\}].    X  \mvdash{}  Equiv(T;A)



Date html generated: 2020_05_20-PM-03_26_07
Last ObjectModification: 2020_04_06-PM-06_44_01

Theory : cubical!type!theory


Home Index