Nuprl Lemma : cc-snd_wf-cubical-fun

X:j⊢. ∀A,B:{X ⊢ _}.  (q ∈ {X.(A ⟶ B) ⊢ _:((A)p ⟶ (B)p)})


Proof




Definitions occuring in Statement :  cubical-fun: (A ⟶ B) cc-snd: q cc-fst: p cube-context-adjoin: X.A cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical_set: CubicalSet all: x:A. B[x] member: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T cubical_set: CubicalSet uall: [x:A]. B[x] cubical-fun: (A ⟶ B) presheaf-fun: (A ⟶ B) cubical-fun-family: cubical-fun-family(X; A; B; I; a) presheaf-fun-family: presheaf-fun-family(C; X; A; B; I; a) cube-cat: CubeCat cubical-type-at: A(a) presheaf-type-at: A(a) csm-ap-type: (AF)s pscm-ap-type: (AF)s csm-ap: (s)x pscm-ap: (s)x cc-fst: p psc-fst: p cube-set-restriction: f(s) psc-restriction: f(s) cube-context-adjoin: X.A psc-adjoin: X.A I_cube: A(I) I_set: A(I) cubical-type-ap-morph: (u f) presheaf-type-ap-morph: (u f) cc-snd: q psc-snd: q
Lemmas referenced :  psc-snd_wf-presheaf-fun cube-cat_wf cubical-type-sq-presheaf-type cat_ob_pair_lemma cat_arrow_triple_lemma cat_comp_tuple_lemma cubical-term-sq-presheaf-term
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity dependent_functionElimination thin hypothesis sqequalRule isectElimination Error :memTop

Latex:
\mforall{}X:j\mvdash{}.  \mforall{}A,B:\{X  \mvdash{}  \_\}.    (q  \mmember{}  \{X.(A  {}\mrightarrow{}  B)  \mvdash{}  \_:((A)p  {}\mrightarrow{}  (B)p)\})



Date html generated: 2020_05_20-PM-02_24_20
Last ObjectModification: 2020_04_03-PM-08_34_37

Theory : cubical!type!theory


Home Index