Nuprl Lemma : psc-snd_wf-presheaf-fun

C:SmallCategory. ∀X:ps_context{j:l}(C). ∀A,B:{X ⊢ _}.  (q ∈ {X.(A ⟶ B) ⊢ _:((A)p ⟶ (B)p)})


Proof




Definitions occuring in Statement :  presheaf-fun: (A ⟶ B) psc-snd: q psc-fst: p psc-adjoin: X.A presheaf-term: {X ⊢ _:A} pscm-ap-type: (AF)s presheaf-type: {X ⊢ _} ps_context: __⊢ all: x:A. B[x] member: t ∈ T small-category: SmallCategory
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] squash: T subtype_rel: A ⊆B true: True
Lemmas referenced :  psc-snd_wf presheaf-fun_wf presheaf-term_wf2 psc-adjoin_wf ps_context_cumulativity2 presheaf-type-cumulativity2 pscm-presheaf-fun psc-fst_wf presheaf-type_wf ps_context_wf small-category-cumulativity-2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality because_Cache hypothesis applyEquality instantiate lambdaEquality_alt imageElimination sqequalRule dependent_functionElimination natural_numberEquality imageMemberEquality baseClosed equalityTransitivity equalitySymmetry hyp_replacement universeIsType inhabitedIsType

Latex:
\mforall{}C:SmallCategory.  \mforall{}X:ps\_context\{j:l\}(C).  \mforall{}A,B:\{X  \mvdash{}  \_\}.    (q  \mmember{}  \{X.(A  {}\mrightarrow{}  B)  \mvdash{}  \_:((A)p  {}\mrightarrow{}  (B)p)\})



Date html generated: 2020_05_20-PM-01_30_01
Last ObjectModification: 2020_04_02-PM-06_18_24

Theory : presheaf!models!of!type!theory


Home Index