Nuprl Lemma : psc-snd_wf-presheaf-fun
∀C:SmallCategory. ∀X:ps_context{j:l}(C). ∀A,B:{X ⊢ _}.  (q ∈ {X.(A ⟶ B) ⊢ _:((A)p ⟶ (B)p)})
Proof
Definitions occuring in Statement : 
presheaf-fun: (A ⟶ B)
, 
psc-snd: q
, 
psc-fst: p
, 
psc-adjoin: X.A
, 
presheaf-term: {X ⊢ _:A}
, 
pscm-ap-type: (AF)s
, 
presheaf-type: {X ⊢ _}
, 
ps_context: __⊢
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
small-category: SmallCategory
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
true: True
Lemmas referenced : 
psc-snd_wf, 
presheaf-fun_wf, 
presheaf-term_wf2, 
psc-adjoin_wf, 
ps_context_cumulativity2, 
presheaf-type-cumulativity2, 
pscm-presheaf-fun, 
psc-fst_wf, 
presheaf-type_wf, 
ps_context_wf, 
small-category-cumulativity-2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
hypothesis, 
applyEquality, 
instantiate, 
lambdaEquality_alt, 
imageElimination, 
sqequalRule, 
dependent_functionElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
hyp_replacement, 
universeIsType, 
inhabitedIsType
Latex:
\mforall{}C:SmallCategory.  \mforall{}X:ps\_context\{j:l\}(C).  \mforall{}A,B:\{X  \mvdash{}  \_\}.    (q  \mmember{}  \{X.(A  {}\mrightarrow{}  B)  \mvdash{}  \_:((A)p  {}\mrightarrow{}  (B)p)\})
Date html generated:
2020_05_20-PM-01_30_01
Last ObjectModification:
2020_04_02-PM-06_18_24
Theory : presheaf!models!of!type!theory
Home
Index