Nuprl Lemma : presheaf-fun_wf

[C:SmallCategory]. ∀[X:ps_context{j:l}(C)]. ∀[A,B:{X ⊢ _}].  ((A ⟶ B) ∈ X ⊢ )


Proof




Definitions occuring in Statement :  presheaf-fun: (A ⟶ B) presheaf-type: {X ⊢ _} ps_context: __⊢ uall: [x:A]. B[x] member: t ∈ T small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T presheaf-fun: (A ⟶ B) presheaf-type: {X ⊢ _} subtype_rel: A ⊆B presheaf-fun-family: presheaf-fun-family(C; X; A; B; I; a) so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a squash: T all: x:A. B[x] true: True prop: guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q cand: c∧ B
Lemmas referenced :  presheaf-type_wf ps_context_wf small-category-cumulativity-2 small-category_wf presheaf-fun-family_wf I_set_wf cat-ob_wf cat-comp_wf subtype_rel_dep_function presheaf-type-at_wf psc-restriction_wf subtype_rel-equal psc-restriction-comp cat-arrow_wf presheaf-type-ap-morph_wf equal_wf squash_wf true_wf istype-universe subtype_rel_self iff_weakening_equal cat-comp-assoc cat-comp-ident2 cat-id_wf psc-restriction-id
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut dependent_set_memberEquality_alt sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry inhabitedIsType hypothesisEquality isect_memberEquality_alt isectElimination thin isectIsTypeImplies universeIsType extract_by_obid instantiate applyEquality dependent_pairEquality_alt lambdaEquality_alt setElimination rename because_Cache independent_isectElimination imageElimination dependent_functionElimination natural_numberEquality imageMemberEquality baseClosed lambdaFormation_alt functionIsType equalityIstype hyp_replacement universeEquality productElimination independent_functionElimination functionEquality independent_pairFormation functionExtensionality_alt productIsType

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:ps\_context\{j:l\}(C)].  \mforall{}[A,B:\{X  \mvdash{}  \_\}].    ((A  {}\mrightarrow{}  B)  \mmember{}  X  \mvdash{}  )



Date html generated: 2020_05_20-PM-01_29_33
Last ObjectModification: 2020_04_02-PM-03_02_11

Theory : presheaf!models!of!type!theory


Home Index