Nuprl Lemma : presheaf-fun-family_wf

[C:SmallCategory]. ∀[X:ps_context{j:l}(C)]. ∀[A,B:{X ⊢ _}]. ∀[I:cat-ob(C)]. ∀[a:X(I)].
  (presheaf-fun-family(C; X; A; B; I; a) ∈ Type)


Proof




Definitions occuring in Statement :  presheaf-fun-family: presheaf-fun-family(C; X; A; B; I; a) presheaf-type: {X ⊢ _} I_set: A(I) ps_context: __⊢ uall: [x:A]. B[x] member: t ∈ T universe: Type cat-ob: cat-ob(C) small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T presheaf-fun-family: presheaf-fun-family(C; X; A; B; I; a) all: x:A. B[x] subtype_rel: A ⊆B uimplies: supposing a squash: T true: True prop:
Lemmas referenced :  cat-ob_wf cat-arrow_wf presheaf-type-at_wf psc-restriction_wf equal_wf presheaf-type-ap-morph_wf cat-comp_wf subtype_rel-equal psc-restriction-comp I_set_wf presheaf-type_wf ps_context_wf small-category-cumulativity-2 small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule setEquality functionEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality independent_isectElimination lambdaEquality_alt imageElimination because_Cache dependent_functionElimination natural_numberEquality imageMemberEquality baseClosed equalitySymmetry axiomEquality equalityTransitivity universeIsType isect_memberEquality_alt isectIsTypeImplies inhabitedIsType instantiate

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:ps\_context\{j:l\}(C)].  \mforall{}[A,B:\{X  \mvdash{}  \_\}].  \mforall{}[I:cat-ob(C)].  \mforall{}[a:X(I)].
    (presheaf-fun-family(C;  X;  A;  B;  I;  a)  \mmember{}  Type)



Date html generated: 2020_05_20-PM-01_28_58
Last ObjectModification: 2020_04_02-PM-01_56_35

Theory : presheaf!models!of!type!theory


Home Index