Nuprl Lemma : cat-comp-ident2
∀[C:SmallCategory]. ∀x,y:cat-ob(C). ∀f:cat-arrow(C) x y.  ((cat-comp(C) x y y f (cat-id(C) y)) = f ∈ (cat-arrow(C) x y))
Proof
Definitions occuring in Statement : 
cat-comp: cat-comp(C)
, 
cat-id: cat-id(C)
, 
cat-arrow: cat-arrow(C)
, 
cat-ob: cat-ob(C)
, 
small-category: SmallCategory
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
Lemmas referenced : 
cat-comp-ident, 
cat-arrow_wf, 
cat-ob_wf, 
small-category_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
productElimination, 
hypothesis, 
applyEquality, 
sqequalRule, 
lambdaEquality, 
axiomEquality, 
because_Cache
Latex:
\mforall{}[C:SmallCategory].  \mforall{}x,y:cat-ob(C).  \mforall{}f:cat-arrow(C)  x  y.    ((cat-comp(C)  x  y  y  f  (cat-id(C)  y))  =  f)
Date html generated:
2020_05_20-AM-07_50_02
Last ObjectModification:
2017_01_11-PM-02_09_42
Theory : small!categories
Home
Index