Nuprl Lemma : psc-fst_wf

[C:SmallCategory]. ∀[Gamma:ps_context{j:l}(C)]. ∀[A:{Gamma ⊢ _}].  (p ∈ psc_map{[i j]:l}(C; Gamma.A; Gamma))


Proof




Definitions occuring in Statement :  psc-fst: p psc-adjoin: X.A presheaf-type: {X ⊢ _} psc_map: A ⟶ B ps_context: __⊢ uall: [x:A]. B[x] member: t ∈ T small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T psc-fst: p subtype_rel: A ⊆B all: x:A. B[x] psc-adjoin: X.A pi1: fst(t) psc-restriction: f(s) pi2: snd(t)
Lemmas referenced :  psc-map-is psc-adjoin_wf small-category-cumulativity-2 ps_context_cumulativity2 presheaf-type-cumulativity2 pi1_wf_top I_set_wf cat-ob_wf cat-arrow_wf psc-restriction_wf presheaf-type_wf ps_context_wf small-category_wf I_set_pair_redex_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule thin instantiate extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality hypothesis because_Cache dependent_set_memberEquality_alt lambdaEquality_alt universeIsType lambdaFormation_alt functionIsType equalityIstype axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality_alt isectIsTypeImplies inhabitedIsType dependent_functionElimination Error :memTop,  productElimination independent_pairEquality

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[Gamma:ps\_context\{j:l\}(C)].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].
    (p  \mmember{}  psc\_map\{[i  |  j]:l\}(C;  Gamma.A;  Gamma))



Date html generated: 2020_05_20-PM-01_27_23
Last ObjectModification: 2020_04_02-PM-00_44_47

Theory : presheaf!models!of!type!theory


Home Index