Nuprl Lemma : psc-map-is

[C:SmallCategory]. ∀[A,B:ps_context{j:l}(C)].
  (psc_map{j:l}(C; A; B) {trans:I:cat-ob(C) ⟶ A(I) ⟶ B(I)| 
                            ∀I,J:cat-ob(C). ∀g:cat-arrow(C) I.
                              ((λs.g(trans s)) s.(trans g(s))) ∈ (A(I) ⟶ B(J)))} )


Proof




Definitions occuring in Statement :  psc_map: A ⟶ B psc-restriction: f(s) I_set: A(I) ps_context: __⊢ uall: [x:A]. B[x] all: x:A. B[x] set: {x:A| B[x]}  apply: a lambda: λx.A[x] function: x:A ⟶ B[x] sqequal: t equal: t ∈ T cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T small-category: SmallCategory spreadn: spread4 psc-restriction: f(s) I_set: A(I) psc_map: A ⟶ B all: x:A. B[x] type-cat: TypeCat op-cat: op-cat(C) nat-trans: nat-trans(C;D;F;G) functor-arrow: arrow(F) compose: g subtype_rel: A ⊆B
Lemmas referenced :  cat_ob_pair_lemma cat_arrow_triple_lemma cat_comp_tuple_lemma ps_context_wf small-category-cumulativity-2 small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution setElimination thin rename productElimination sqequalRule extract_by_obid dependent_functionElimination Error :memTop,  hypothesis axiomSqEquality inhabitedIsType hypothesisEquality isect_memberEquality_alt isectElimination isectIsTypeImplies universeIsType instantiate applyEquality

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[A,B:ps\_context\{j:l\}(C)].
    (psc\_map\{j:l\}(C;  A;  B)  \msim{}  \{trans:I:cat-ob(C)  {}\mrightarrow{}  A(I)  {}\mrightarrow{}  B(I)| 
                                                        \mforall{}I,J:cat-ob(C).  \mforall{}g:cat-arrow(C)  J  I.
                                                            ((\mlambda{}s.g(trans  I  s))  =  (\mlambda{}s.(trans  J  g(s))))\}  )



Date html generated: 2020_05_20-PM-01_24_35
Last ObjectModification: 2020_04_01-AM-11_00_39

Theory : presheaf!models!of!type!theory


Home Index