Nuprl Lemma : psc-map-is
∀[C:SmallCategory]. ∀[A,B:ps_context{j:l}(C)].
  (psc_map{j:l}(C; A; B) ~ {trans:I:cat-ob(C) ⟶ A(I) ⟶ B(I)| 
                            ∀I,J:cat-ob(C). ∀g:cat-arrow(C) J I.
                              ((λs.g(trans I s)) = (λs.(trans J g(s))) ∈ (A(I) ⟶ B(J)))} )
Proof
Definitions occuring in Statement : 
psc_map: A ⟶ B
, 
psc-restriction: f(s)
, 
I_set: A(I)
, 
ps_context: __⊢
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
sqequal: s ~ t
, 
equal: s = t ∈ T
, 
cat-arrow: cat-arrow(C)
, 
cat-ob: cat-ob(C)
, 
small-category: SmallCategory
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
small-category: SmallCategory
, 
spreadn: spread4, 
psc-restriction: f(s)
, 
I_set: A(I)
, 
psc_map: A ⟶ B
, 
all: ∀x:A. B[x]
, 
type-cat: TypeCat
, 
op-cat: op-cat(C)
, 
nat-trans: nat-trans(C;D;F;G)
, 
functor-arrow: arrow(F)
, 
compose: f o g
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
cat_ob_pair_lemma, 
cat_arrow_triple_lemma, 
cat_comp_tuple_lemma, 
ps_context_wf, 
small-category-cumulativity-2, 
small-category_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
productElimination, 
sqequalRule, 
extract_by_obid, 
dependent_functionElimination, 
Error :memTop, 
hypothesis, 
axiomSqEquality, 
inhabitedIsType, 
hypothesisEquality, 
isect_memberEquality_alt, 
isectElimination, 
isectIsTypeImplies, 
universeIsType, 
instantiate, 
applyEquality
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[A,B:ps\_context\{j:l\}(C)].
    (psc\_map\{j:l\}(C;  A;  B)  \msim{}  \{trans:I:cat-ob(C)  {}\mrightarrow{}  A(I)  {}\mrightarrow{}  B(I)| 
                                                        \mforall{}I,J:cat-ob(C).  \mforall{}g:cat-arrow(C)  J  I.
                                                            ((\mlambda{}s.g(trans  I  s))  =  (\mlambda{}s.(trans  J  g(s))))\}  )
Date html generated:
2020_05_20-PM-01_24_35
Last ObjectModification:
2020_04_01-AM-11_00_39
Theory : presheaf!models!of!type!theory
Home
Index