Nuprl Lemma : presheaf-term_wf2

[C:SmallCategory]. ∀[X:ps_context{[i j]:l}(C)]. ∀[A:{X ⊢ _}].  ({X ⊢ _:A} ∈ 𝕌{[i' j']})


Proof




Definitions occuring in Statement :  presheaf-term: {X ⊢ _:A} presheaf-type: {X ⊢ _} ps_context: __⊢ uall: [x:A]. B[x] member: t ∈ T universe: Type small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B
Lemmas referenced :  presheaf-term_wf presheaf-type_wf ps_context_wf small-category-cumulativity-2 small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry universeIsType isect_memberEquality_alt isectIsTypeImplies inhabitedIsType applyEquality

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:ps\_context\{[i  |  j]:l\}(C)].  \mforall{}[A:\{X  \mvdash{}  \_\}].    (\{X  \mvdash{}  \_:A\}  \mmember{}  \mBbbU{}\{[i'  |  j']\})



Date html generated: 2020_05_20-PM-01_26_35
Last ObjectModification: 2020_04_02-PM-06_12_00

Theory : presheaf!models!of!type!theory


Home Index