Nuprl Lemma : is-cubical-equiv_wf

[X:j⊢]. ∀[T,A:{X ⊢ _}]. ∀[w:{X ⊢ _:(T ⟶ A)}].  X ⊢ IsEquiv(T;A;w)


Proof




Definitions occuring in Statement :  is-cubical-equiv: IsEquiv(T;A;w) cubical-fun: (A ⟶ B) cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T is-cubical-equiv: IsEquiv(T;A;w) subtype_rel: A ⊆B squash: T all: x:A. B[x] true: True
Lemmas referenced :  cubical-pi_wf contractible-type_wf cube-context-adjoin_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 cubical-fiber_wf csm-ap-type_wf cc-fst_wf csm-ap-term_wf cubical-fun_wf cubical-term_wf csm-cubical-fun cc-snd_wf cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality instantiate applyEquality hypothesis because_Cache lambdaEquality_alt imageElimination dependent_functionElimination natural_numberEquality imageMemberEquality baseClosed equalityTransitivity equalitySymmetry hyp_replacement universeIsType axiomEquality isect_memberEquality_alt isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[T,A:\{X  \mvdash{}  \_\}].  \mforall{}[w:\{X  \mvdash{}  \_:(T  {}\mrightarrow{}  A)\}].    X  \mvdash{}  IsEquiv(T;A;w)



Date html generated: 2020_05_20-PM-03_25_18
Last ObjectModification: 2020_04_06-PM-06_43_07

Theory : cubical!type!theory


Home Index