Nuprl Lemma : csm-ap-id-type
∀[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ((A)1(Gamma) = A ∈ {Gamma ⊢ _})
Proof
Definitions occuring in Statement :
csm-ap-type: (AF)s
,
cubical-type: {X ⊢ _}
,
csm-id: 1(X)
,
cubical_set: CubicalSet
,
uall: ∀[x:A]. B[x]
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
cubical_set: CubicalSet
,
csm-ap-type: (AF)s
,
pscm-ap-type: (AF)s
,
csm-ap: (s)x
,
pscm-ap: (s)x
,
csm-id: 1(X)
,
pscm-id: 1(X)
Lemmas referenced :
pscm-ap-id-type,
cube-cat_wf,
cubical-type-sq-presheaf-type
Rules used in proof :
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isectElimination,
thin,
hypothesis,
sqequalRule,
Error :memTop
Latex:
\mforall{}[Gamma:j\mvdash{}]. \mforall{}[A:\{Gamma \mvdash{} \_\}]. ((A)1(Gamma) = A)
Date html generated:
2020_05_20-PM-01_49_40
Last ObjectModification:
2020_04_03-PM-08_27_06
Theory : cubical!type!theory
Home
Index