Nuprl Lemma : csm-ap-id-type
∀[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}].  ((A)1(Gamma) = A ∈ {Gamma ⊢ _})
Proof
Definitions occuring in Statement : 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
csm-id: 1(X)
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cubical_set: CubicalSet
, 
csm-ap-type: (AF)s
, 
pscm-ap-type: (AF)s
, 
csm-ap: (s)x
, 
pscm-ap: (s)x
, 
csm-id: 1(X)
, 
pscm-id: 1(X)
Lemmas referenced : 
pscm-ap-id-type, 
cube-cat_wf, 
cubical-type-sq-presheaf-type
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
Error :memTop
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].    ((A)1(Gamma)  =  A)
Date html generated:
2020_05_20-PM-01_49_40
Last ObjectModification:
2020_04_03-PM-08_27_06
Theory : cubical!type!theory
Home
Index