Nuprl Lemma : csm-ap-id-type

[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}].  ((A)1(Gamma) A ∈ {Gamma ⊢ _})


Proof




Definitions occuring in Statement :  csm-ap-type: (AF)s cubical-type: {X ⊢ _} csm-id: 1(X) cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical_set: CubicalSet csm-ap-type: (AF)s pscm-ap-type: (AF)s csm-ap: (s)x pscm-ap: (s)x csm-id: 1(X) pscm-id: 1(X)
Lemmas referenced :  pscm-ap-id-type cube-cat_wf cubical-type-sq-presheaf-type
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis sqequalRule Error :memTop

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].    ((A)1(Gamma)  =  A)



Date html generated: 2020_05_20-PM-01_49_40
Last ObjectModification: 2020_04_03-PM-08_27_06

Theory : cubical!type!theory


Home Index