Nuprl Lemma : equiv-comp_wf
∀[H:j⊢]. ∀[A,E:{H ⊢ _}]. ∀[cA:H ⊢ CompOp(A)]. ∀[cE:H ⊢ CompOp(E)].  (equiv-comp(H;A;E;cA;cE) ∈ H ⊢ CompOp(Equiv(A;E)))
Proof
Definitions occuring in Statement : 
equiv-comp: equiv-comp(H;A;E;cA;cE)
, 
composition-op: Gamma ⊢ CompOp(A)
, 
cubical-equiv: Equiv(T;A)
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
equiv-comp: equiv-comp(H;A;E;cA;cE)
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
comp-fun-to-comp-op_wf, 
cubical-equiv_wf, 
equiv_comp_wf, 
comp-op-to-comp-fun_wf2, 
composition-op_wf, 
cubical_set_cumulativity-i-j, 
cubical-type-cumulativity2, 
cubical-type_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
hypothesis, 
isectElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType
Latex:
\mforall{}[H:j\mvdash{}].  \mforall{}[A,E:\{H  \mvdash{}  \_\}].  \mforall{}[cA:H  \mvdash{}  CompOp(A)].  \mforall{}[cE:H  \mvdash{}  CompOp(E)].
    (equiv-comp(H;A;E;cA;cE)  \mmember{}  H  \mvdash{}  CompOp(Equiv(A;E)))
Date html generated:
2020_05_20-PM-07_20_18
Last ObjectModification:
2020_04_25-PM-09_49_50
Theory : cubical!type!theory
Home
Index