Nuprl Lemma : equiv-comp_wf

[H:j⊢]. ∀[A,E:{H ⊢ _}]. ∀[cA:H ⊢ CompOp(A)]. ∀[cE:H ⊢ CompOp(E)].  (equiv-comp(H;A;E;cA;cE) ∈ H ⊢ CompOp(Equiv(A;E)))


Proof




Definitions occuring in Statement :  equiv-comp: equiv-comp(H;A;E;cA;cE) composition-op: Gamma ⊢ CompOp(A) cubical-equiv: Equiv(T;A) cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T equiv-comp: equiv-comp(H;A;E;cA;cE) all: x:A. B[x] subtype_rel: A ⊆B
Lemmas referenced :  comp-fun-to-comp-op_wf cubical-equiv_wf equiv_comp_wf comp-op-to-comp-fun_wf2 composition-op_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule thin instantiate extract_by_obid sqequalHypSubstitution dependent_functionElimination hypothesisEquality applyEquality because_Cache hypothesis isectElimination axiomEquality equalityTransitivity equalitySymmetry universeIsType isect_memberEquality_alt isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[H:j\mvdash{}].  \mforall{}[A,E:\{H  \mvdash{}  \_\}].  \mforall{}[cA:H  \mvdash{}  CompOp(A)].  \mforall{}[cE:H  \mvdash{}  CompOp(E)].
    (equiv-comp(H;A;E;cA;cE)  \mmember{}  H  \mvdash{}  CompOp(Equiv(A;E)))



Date html generated: 2020_05_20-PM-07_20_18
Last ObjectModification: 2020_04_25-PM-09_49_50

Theory : cubical!type!theory


Home Index