Nuprl Lemma : equiv_comp_wf

[H:j⊢]. ∀[A,E:{H ⊢ _}]. ∀[cA:H +⊢ Compositon(A)]. ∀[cE:H +⊢ Compositon(E)].
  (equiv_comp(H;A;E;cA;cE) ∈ +⊢ Compositon(Equiv(A;E)))


Proof




Definitions occuring in Statement :  equiv_comp: equiv_comp(H;A;E;cA;cE) composition-structure: Gamma ⊢ Compositon(A) cubical-equiv: Equiv(T;A) cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B uimplies: supposing a equiv_comp: equiv_comp(H;A;E;cA;cE) cubical-equiv: Equiv(T;A) is-cubical-equiv: IsEquiv(T;A;w) composition-structure: Gamma ⊢ Compositon(A) composition-function: composition-function{j:l,i:l}(Gamma;A) uniform-comp-function: uniform-comp-function{j:l, i:l}(Gamma; A; comp) all: x:A. B[x] true: True squash: T prop: guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  csm-ap-term_wf cube-context-adjoin_wf cubical-fun_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j csm-ap-type_wf cc-fst_wf cc-snd_wf cubical-term-eqcd sigma_comp_wf2 cubical-pi_wf contractible-type_wf cubical-fiber_wf pi_comp_wf_fun pi_comp_wf2 csm-comp-structure_wf2 subtype_rel_self composition-structure_wf contractible_comp_wf fiber-comp_wf cubical-type_wf cubical_set_wf equal_wf squash_wf true_wf istype-universe cubical-fun-p iff_weakening_equal cube_set_map_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality because_Cache hypothesis sqequalRule equalityTransitivity equalitySymmetry independent_isectElimination lambdaEquality_alt hyp_replacement universeIsType axiomEquality isect_memberEquality_alt isectIsTypeImplies inhabitedIsType natural_numberEquality imageElimination universeEquality dependent_functionElimination imageMemberEquality baseClosed productElimination independent_functionElimination

Latex:
\mforall{}[H:j\mvdash{}].  \mforall{}[A,E:\{H  \mvdash{}  \_\}].  \mforall{}[cA:H  +\mvdash{}  Compositon(A)].  \mforall{}[cE:H  +\mvdash{}  Compositon(E)].
    (equiv\_comp(H;A;E;cA;cE)  \mmember{}  H  +\mvdash{}  Compositon(Equiv(A;E)))



Date html generated: 2020_05_20-PM-07_18_22
Last ObjectModification: 2020_04_27-PM-01_53_47

Theory : cubical!type!theory


Home Index