Nuprl Lemma : cubical-fun-p

X:j⊢. ∀A,B,T:{X ⊢ _}.  (((A ⟶ B))p (X.T ⊢ (A)p ⟶ (B)p) ∈ {X.T ⊢ _})


Proof




Definitions occuring in Statement :  cubical-fun: (A ⟶ B) cc-fst: p cube-context-adjoin: X.A csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical_set: CubicalSet all: x:A. B[x] equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T cubical_set: CubicalSet uall: [x:A]. B[x] cube-context-adjoin: X.A psc-adjoin: X.A I_cube: A(I) I_set: A(I) cubical-type-at: A(a) presheaf-type-at: A(a) cube-set-restriction: f(s) psc-restriction: f(s) cubical-type-ap-morph: (u f) presheaf-type-ap-morph: (u f) csm-ap-type: (AF)s pscm-ap-type: (AF)s cubical-fun: (A ⟶ B) presheaf-fun: (A ⟶ B) cubical-fun-family: cubical-fun-family(X; A; B; I; a) presheaf-fun-family: presheaf-fun-family(C; X; A; B; I; a) cube-cat: CubeCat csm-ap: (s)x pscm-ap: (s)x cc-fst: p psc-fst: p
Lemmas referenced :  presheaf-fun-p cube-cat_wf cubical-type-sq-presheaf-type cat_ob_pair_lemma cat_arrow_triple_lemma cat_comp_tuple_lemma
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity dependent_functionElimination thin hypothesis sqequalRule isectElimination Error :memTop

Latex:
\mforall{}X:j\mvdash{}.  \mforall{}A,B,T:\{X  \mvdash{}  \_\}.    (((A  {}\mrightarrow{}  B))p  =  (X.T  \mvdash{}  (A)p  {}\mrightarrow{}  (B)p))



Date html generated: 2020_05_20-PM-02_24_01
Last ObjectModification: 2020_04_03-PM-08_34_22

Theory : cubical!type!theory


Home Index