Nuprl Lemma : cubical-fun-p
∀X:j⊢. ∀A,B,T:{X ⊢ _}.  (((A ⟶ B))p = (X.T ⊢ (A)p ⟶ (B)p) ∈ {X.T ⊢ _})
Proof
Definitions occuring in Statement : 
cubical-fun: (A ⟶ B)
, 
cc-fst: p
, 
cube-context-adjoin: X.A
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
all: ∀x:A. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
cube-context-adjoin: X.A
, 
psc-adjoin: X.A
, 
I_cube: A(I)
, 
I_set: A(I)
, 
cubical-type-at: A(a)
, 
presheaf-type-at: A(a)
, 
cube-set-restriction: f(s)
, 
psc-restriction: f(s)
, 
cubical-type-ap-morph: (u a f)
, 
presheaf-type-ap-morph: (u a f)
, 
csm-ap-type: (AF)s
, 
pscm-ap-type: (AF)s
, 
cubical-fun: (A ⟶ B)
, 
presheaf-fun: (A ⟶ B)
, 
cubical-fun-family: cubical-fun-family(X; A; B; I; a)
, 
presheaf-fun-family: presheaf-fun-family(C; X; A; B; I; a)
, 
cube-cat: CubeCat
, 
csm-ap: (s)x
, 
pscm-ap: (s)x
, 
cc-fst: p
, 
psc-fst: p
Lemmas referenced : 
presheaf-fun-p, 
cube-cat_wf, 
cubical-type-sq-presheaf-type, 
cat_ob_pair_lemma, 
cat_arrow_triple_lemma, 
cat_comp_tuple_lemma
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
dependent_functionElimination, 
thin, 
hypothesis, 
sqequalRule, 
isectElimination, 
Error :memTop
Latex:
\mforall{}X:j\mvdash{}.  \mforall{}A,B,T:\{X  \mvdash{}  \_\}.    (((A  {}\mrightarrow{}  B))p  =  (X.T  \mvdash{}  (A)p  {}\mrightarrow{}  (B)p))
Date html generated:
2020_05_20-PM-02_24_01
Last ObjectModification:
2020_04_03-PM-08_34_22
Theory : cubical!type!theory
Home
Index