Nuprl Lemma : presheaf-fun-p
∀C:SmallCategory. ∀X:ps_context{j:l}(C). ∀A,B,T:{X ⊢ _}.  (((A ⟶ B))p = (X.T ⊢ (A)p ⟶ (B)p) ∈ {X.T ⊢ _})
Proof
Definitions occuring in Statement : 
presheaf-fun: (A ⟶ B)
, 
psc-fst: p
, 
psc-adjoin: X.A
, 
pscm-ap-type: (AF)s
, 
presheaf-type: {X ⊢ _}
, 
ps_context: __⊢
, 
all: ∀x:A. B[x]
, 
equal: s = t ∈ T
, 
small-category: SmallCategory
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
pscm-presheaf-fun, 
ps_context_cumulativity2, 
small-category-cumulativity-2, 
psc-adjoin_wf, 
presheaf-type-cumulativity2, 
psc-fst_wf, 
presheaf-type_wf, 
ps_context_wf, 
small-category_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
hypothesisEquality, 
applyEquality, 
isectElimination, 
hypothesis, 
sqequalRule, 
because_Cache, 
inhabitedIsType, 
universeIsType
Latex:
\mforall{}C:SmallCategory.  \mforall{}X:ps\_context\{j:l\}(C).  \mforall{}A,B,T:\{X  \mvdash{}  \_\}.    (((A  {}\mrightarrow{}  B))p  =  (X.T  \mvdash{}  (A)p  {}\mrightarrow{}  (B)p))
Date html generated:
2020_05_20-PM-01_29_54
Last ObjectModification:
2020_04_02-PM-03_01_13
Theory : presheaf!models!of!type!theory
Home
Index