Nuprl Lemma : presheaf-fun-p

C:SmallCategory. ∀X:ps_context{j:l}(C). ∀A,B,T:{X ⊢ _}.  (((A ⟶ B))p (X.T ⊢ (A)p ⟶ (B)p) ∈ {X.T ⊢ _})


Proof




Definitions occuring in Statement :  presheaf-fun: (A ⟶ B) psc-fst: p psc-adjoin: X.A pscm-ap-type: (AF)s presheaf-type: {X ⊢ _} ps_context: __⊢ all: x:A. B[x] equal: t ∈ T small-category: SmallCategory
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T subtype_rel: A ⊆B uall: [x:A]. B[x]
Lemmas referenced :  pscm-presheaf-fun ps_context_cumulativity2 small-category-cumulativity-2 psc-adjoin_wf presheaf-type-cumulativity2 psc-fst_wf presheaf-type_wf ps_context_wf small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut thin instantiate introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination hypothesisEquality applyEquality isectElimination hypothesis sqequalRule because_Cache inhabitedIsType universeIsType

Latex:
\mforall{}C:SmallCategory.  \mforall{}X:ps\_context\{j:l\}(C).  \mforall{}A,B,T:\{X  \mvdash{}  \_\}.    (((A  {}\mrightarrow{}  B))p  =  (X.T  \mvdash{}  (A)p  {}\mrightarrow{}  (B)p))



Date html generated: 2020_05_20-PM-01_29_54
Last ObjectModification: 2020_04_02-PM-03_01_13

Theory : presheaf!models!of!type!theory


Home Index