Nuprl Lemma : sigma_comp_wf2

[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[B:{X.A ⊢ _}]. ∀[cA:X ⊢ Compositon(A)]. ∀[cB:X.A +⊢ Compositon(B)].
  (sigma_comp(cA;cB) ∈ X ⊢ Compositon(Σ B))


Proof




Definitions occuring in Statement :  sigma_comp: sigma_comp(cA;cB) composition-structure: Gamma ⊢ Compositon(A) cubical-sigma: Σ B cube-context-adjoin: X.A cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T composition-structure: Gamma ⊢ Compositon(A) uniform-comp-function: uniform-comp-function{j:l, i:l}(Gamma; A; comp) all: x:A. B[x] constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} subtype_rel: A ⊆B csm-id-adjoin: [u] csm-id: 1(X) uimplies: supposing a prop: sigma_comp: sigma_comp(cA;cB) csm+: tau+ guard: {T} implies:  Q respects-equality: respects-equality(S;T) compose: g cat-comp: cat-comp(C) names-hom: I ⟶ J type-cat: TypeCat pi2: snd(t) cat-arrow: cat-arrow(C) quotient: x,y:A//B[x; y] fset: fset(T) cube-cat: CubeCat spreadn: spread4 op-cat: op-cat(C) pi1: fst(t) cat-ob: cat-ob(C) nat-trans: nat-trans(C;D;F;G) psc_map: A ⟶ B cube_set_map: A ⟶ B true: True squash: T partial-term-0: u[0] csm-comp-structure: (cA)tau interval-type: 𝕀 csm-comp: F cc-snd: q cc-fst: p constant-cubical-type: (X) csm-ap-type: (AF)s csm-adjoin: (s;u) csm-ap: (s)x let: let csm-ap-term: (t)s interval-1: 1(𝕀) and: P ∧ Q cubical-type: {X ⊢ _} interval-0: 0(𝕀) rev_implies:  Q iff: ⇐⇒ Q composition-function: composition-function{j:l,i:l}(Gamma;A)
Lemmas referenced :  sigma_comp_wf istype-cubical-term context-subset_wf csm-ap-term_wf face-type_wf csm-face-type csm-ap-type_wf cube-context-adjoin_wf interval-type_wf cubical-sigma_wf csm-id-adjoin_wf interval-1_wf csm-context-subset-subtype2 csm-id-adjoin_wf-interval-1 context-subset-map csm-context-subset-subtype3 context-subset-term-subtype interval-0_wf csm-id-adjoin_wf-interval-0 constrained-cubical-term-eqcd cube_set_map_wf uniform-comp-function_wf composition-structure_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j cubical-type_wf cubical_set_wf csm+_wf cube_set_map_cumulativity-i-j subset-cubical-type thin-context-subset-adjoin sub_cubical_set_functionality context-subset-is-subset csm-cubical-sigma equal_wf equal_functionality_wrt_subtype_rel2 cubical-term-eqcd cubical-fst_wf cubical-sigma-subset-adjoin cubical-snd_wf respects-equality-context-subset-term context-adjoin-subset1 cc-fst_wf subset-cubical-term2 partial-term-0_wf subtype_rel_self true_wf squash_wf cubical-term_wf cubical-sigma-subset csm-ap-cubical-fst csm-id-adjoin-subset fill_term_0 cc-fst_wf_interval csm-comp-structure_wf csm-fill_term csm-cubical-pair csm-cubical-fst csm+_wf_interval subset-cubical-term sub_cubical_set_transitivity sub_cubical_set_self fill_term_wf csm-comp-structure-composition-function csm-constrained-cubical-term csm-adjoin_wf csm-id_wf context-adjoin-subset2 thin-context-subset iff_weakening_equal istype-universe csm-cubical-snd context-adjoin-subset4 csm-comp_term comp_term_wf composition-function_wf csm-comp_wf composition-structure-cumulativity subtype_rel-equal csm-comp-type constrained-cubical-term_wf cubical-pair_wf csm-interval-type
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt dependent_set_memberEquality_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaFormation_alt equalityIstype sqequalRule Error :memTop,  equalityTransitivity equalitySymmetry instantiate applyEquality because_Cache universeIsType independent_isectElimination inhabitedIsType dependent_functionElimination hyp_replacement applyLambdaEquality independent_functionElimination lambdaEquality_alt cumulativity universeEquality baseClosed imageMemberEquality natural_numberEquality imageElimination rename setElimination independent_pairFormation productElimination productIsType setEquality functionEquality

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[B:\{X.A  \mvdash{}  \_\}].  \mforall{}[cA:X  \mvdash{}  Compositon(A)].  \mforall{}[cB:X.A  +\mvdash{}  Compositon(B)].
    (sigma\_comp(cA;cB)  \mmember{}  X  \mvdash{}  Compositon(\mSigma{}  A  B))



Date html generated: 2020_05_20-PM-05_00_23
Last ObjectModification: 2020_05_01-PM-11_53_10

Theory : cubical!type!theory


Home Index